Wilton Agila, Gomer Rubio, L. Miranda, & L. Vázquez. (2018). Qualitative Model of Control in the Pressure Stabilization of PEM Fuel Cell. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. (pp. 1221–1226).
Abstract: This work describes an approximate reasoning
technique to deal with the non-linearity that occurs in the
stabilization of the pressure of anodic and cathodic gases of a
proton exchange membrane fuel cell (PEM). The implementation
of a supervisory element in the stabilization of the pressure of the
PEM cell is described. The fuzzy supervisor is a reference
control, it varies the value of the reference given to the classic
low-level controller, Proportional – Integral – Derivative (PID),
according to the speed of change of the measured pressure and
the change in the error of the pressure. The objective of the fuzzy
supervisor is to achieve a rapid response over time of the variable
pressure, avoiding unwanted overruns with respect to the
reference value. A comparative analysis is detailed with the
classic PID control to evaluate the operation of the "fuzzy
supervisor", with different flow values and different sizes of
active area of the PEM cell (electric power generated).
|
Gomer Rubio, & Wilton Agila. (2018). Dynamic Modeling of Fuel Cells in a Strategic Context. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia..
|
Wilton Agila, Gomer Rubio, Francisco Vidal, & B. Lima. (2019). Real time Qualitative Model for estimate Water content in PEM Fuel Cell. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 455–459).
Abstract: To maintain optimum performance of the electrical
response of a fuel cell, a real time identification of the
malfunction situations is required. Critical fuel cell states depend,
among others, on the variable demand of electric load and are
directly related to the membrane hydration level. The real time
perception of relevant states in the PEM fuel cell states space, is
still a challenge for the PEM fuel cell control systems. Current
work presents the design and implementation of a methodology
based upon fuzzy decision techniques that allows real time
characterization of the dehydration and flooding states of a PEM
fuel cell. Real time state estimation is accomplished through a
perturbation-perception process on the PEM fuel cell and further
on voltage oscillation analysis. The real time implementation of
the perturbation-perception algorithm to detect PEM fuel cell
critical states is a novelty and a step forwards the control of the
PEM fuel cell to reach and maintain optimal performance.
|
G.A. Rubio, & Wilton Agila. (2019). Sustainable Energy: A Strategic View of Fuel Cells. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 239–243).
Abstract: Based on the model of the proton exchange fuel cell in a strategic context,
this document develops the issue of energy as one of the pillars to achieve the
sustainability of our planet, considering the future scenarios up to the year 2060 of the
situation energy, hydrogen as a strategic vector and the contribution of the fuel cell in
solving the serious problems of environmental pollution and economic inequity that
humanity faces; for its application in the energy generation, telecommunications and
vehicle manufacturing industries.
|
G.A. Rubio, & Wilton Agila. (2019). Transients analysis in Proton Exchange Membrane Fuel Cells: A critical review. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 249–252).
Abstract: When a proton exchange fuel cell operates it produces in addition to electrical
energy, heat and water as sub products, which impact on the performance of the cell. This
paper analyzes the issue of transients and proposes a model that describes the dynamic
operation of the fuel cell. The model considers the transients produced by electrochemical
reactions, by flow water and by heat transfer. Two-phase flow transients result in
increased the parasitic power losses and thermal transients may result in flooding or dryout of the GDL and membrane, understanding transient behavior is critical for reliable
and predictable performance from the cell.
|
Patricia Suarez Riofrio & Angel D. Sappa. (2024). Thermal Image Synthesis: Bridging the Gap between Visible and Infrared Spectrum. In Accepted in 19th International Symposium on Visual Computing 2024.
|
Tommy David Beltran Borbor, R. J. V. R., Luis Enrique Chuquimarca Jiménez, Boris Xavier Vintimilla Burgos & Sergio Alejandro Velastin. (2024). Fruit Deformity Classification through Single-Input and Multi-Input Architectures based on CNN Models using Real and Synthetic Images. In Accepted in 27th The Iberomican Congress on Pattern Recognition CIARP 2024.
|
Dennys Paillacho Chiluiza & Steven Silva Mendoza. (2024). Exploring the Perceptions and Challenges of Social Robot Navigation: Two Case Studies in Different Socio-Technical Contexts. In Accepted in 36th Australian Conference on Human-Computer Interaction.
|
Dennis G. Romero, A. Frizera, Angel D. Sappa, Boris X. Vintimilla, & T.F. Bastos. (2015). A predictive model for human activity recognition by observing actions and context. In ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 (pp. 323–333).
Abstract: This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
|
M. Diaz, Dennys Paillacho, C. Angulo, O. Torres, J. Gonzálalez, & J. Albo Canals. (2014). A Week-long Study on Robot-Visitors Spatial Relationships during Guidance in a Sciences Museum. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 152–153).
Abstract: In order to observe spatial relationships in social human- robot interactions, a field trial was carried out within the CosmoCaixa Science Museum in Barcelona. The follow me episodes studied showed that the space configurations formed by guide and visitors walking together did not always fit the robot social affordances and navigation requirements to perform the guidance successfully, thus additional commu- nication prompts are considered to regulate effectively the walking together and follow me behaviors.
|