Leo Ramos & Angel D. Sappa. (2024). Multispectral Semantic Segmentation for Land Cover Classification: An Overview (Vol. Vol. 17).
|
Cristhian A. Aguilera, Angel D. Sappa, & R. Toledo. (2015). LGHD: A feature descriptor for matching across non-linear intensity variations. In IEEE International Conference on, Quebec City, QC, 2015 (pp. 178–181). Quebec City, QC, Canada: IEEE.
Abstract: This paper presents a new feature descriptor suitable to the task of matching features points between images with nonlinear intensity variations. This includes image pairs with significant illuminations changes, multi-modal image pairs and multi-spectral image pairs. The proposed method describes the neighbourhood of feature points combining frequency and spatial information using multi-scale and multi-oriented Log- Gabor filters. Experimental results show the validity of the proposed approach and also the improvements with respect to the state of the art.
|
Steven Silva, N. V., Dennys Paillacho, Samuel Millan-Norman & Juan David Hernandez. (2023). Online Social Robot Navigation in Indoor, Large and Crowded Environments. In IEEE International Conference on Robotics and Automation (ICRA 2023) Londres, 29 may 2023 – 2 jun 2023 (Vol. 2023-May, pp. 9749–9756).
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|
Cristhian A. Aguilera, Francisco J. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2016). Learning crossspectral similarity measures with deep convolutional neural networks. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (pp. 267–275).
Abstract: The simultaneous use of images from different spectra can be helpful to improve the performance of many com- puter vision tasks. The core idea behind the usage of cross- spectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN archi- tectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Ex- perimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Ad- ditionally, our experiments show that some CNN architec- tures are capable of generalizing between different cross- spectral domains.
|
Cristina L. Abad, Yi Lu, & Roy H. Campbell. (2011). DARE: Adaptive Data Replication for Efficient Cluster Scheduling. In IEEE International Conference on Cluster Computing, 2011 (pp. 159–168).
Abstract: Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.
|
Silva Steven, P. D., Verdezoto Nervo, Hernandez Juan David. (2022). TOWARDS ONLINE SOCIALLY ACCEPTABLE ROBOT NAVIGATION. In IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, (Vol. 2022-August, pp. 707–714).
|
Raul A. Mira, Patricia L. Suarez, Rafael E. Rivadeneira, & Angel D. Sappa. (2019). PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–6).
Abstract: This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different
communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
|
Sebastián Fuenzalida, Keyla Toapanta, Jonathan S. Paillacho Corredores, & Dennys Paillacho. (2019). Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador.
Abstract: This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,
called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric
relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
|
W. Agila, Gomer Rubio, L. Miranda, & D. Sanaguano. (2019). Open Control Architecture for the Characterization and Control of the PEM Fuel Cell. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–5).
Abstract: Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.
|