Byron Lima, Ricardo Cajo, Victor Huilcapi, & Wilton Agila. (2017). Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum. In Journal of Physics: Conference Series (Vol. 783).
Abstract: The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2016). Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles. Journal of Automation and Control Engineering (JOACE), Vol. 4, pp. 430–436.
Abstract: Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
|
Monica Villavicencio, & Alain Abran. (2011). Educational Issues in the Teaching of Software Measurement in Software Engineering Undergraduate Programs. In Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (pp. 239–244). IEEE.
Abstract: In mature engineering disciplines and science, mathematics and measurement are considered as important subjects to be taught in university programs. This paper discusses about these subjects in terms of their respective meanings and complementarities. It also presents a discussion regarding their maturity, relevance and innovations in their teaching in engineering programs. This paper pays special attention to the teaching of software measurement in higher education, in particular with respect to mathematics and measurement in engineering in general. The findings from this analysis will be useful for researchers and educators interested in the enhancement of educational issues related to software measurement.
|
José Reyes, Axel Godoy, & Miguel Realpe. (2019). Uso de software de código abierto para fusión de imágenes agrícolas multiespectrales adquiridas con drones. In International Multi-Conference of Engineering, Education and Technology (LACCEI 2019); Montego Bay, Jamaica (Vol. 2019-July).
Abstract: Los drones o aeronaves no tripuladas son muy útiles para la adquisición de imágenes, de forma mucho más simple que los satélites o aviones. Sin embargo, las imágenes adquiridas por drones deben ser combinadas de alguna forma para convertirse en información de valor sobre un terreno o cultivo. Existen diferentes programas que reciben imágenes y las combinan en una sola imagen, cada uno con diferentes características (rendimiento, precisión, resultados, precio, etc.). En este estudio se revisaron diferentes programas de código abierto para fusión de imágenes, con el ?n de establecer cuál de ellos es más útil, especí?camente para ser utilizado por pequeños y medianos agricultores en Ecuador. Los resultados pueden ser de interés para diseñadores de software, ya que al utilizar código abierto, es posible modi?car e integrar los programas en un ?ujo de trabajo más simpli?cado. Además, que permite disminuir costos debido a que no requiere de pagos de licencias para su uso, lo cual puede repercutir en un mayor acceso a la tecnología para los pequeños y medianos agricultores. Como parte de los resultados de este estudio se ha creado un repositorio de acceso público con algoritmos de pre-procesamiento necesarios para manipular las imágenes adquiridas por una cámara multiespectral y para luego obtener un mapa completo en formatos RGB, CIR y NDVI.
|
Carlos Monsalve, & Alain April and Alain Abran. (2011). Measuring software functional size from business process models. International Journal of Software Engineering and Knowledge Engineering, Vol. 21, pp. 311–338.
Abstract: ISO 14143-1 specifies that a functional size measurement (FSM) method must provide measurement procedures to quantify the functional user requirements (FURs) of software. Such quantitative information, functional size, is typically used, for instance, in software estimation. One of the international standards for FSM is the COSMIC FSM method — ISO 19761 — which was designed to be applied both to the business application (BA) software domain and to the real-time software domain. A recurrent problem in FSM is the availability and quality of the inputs required for measurement purposes; that is, well documented FURs. Business process (BP) models, as they are commonly used to gather requirements from the early stages of a project, could be a valuable source of information for FSM. In a previous article, the feasibility of such an approach for the BA domain was analyzed using the Qualigram BP modeling notation. This paper complements that work by: (1) analyzing the use of BPMN for FSM in the BA domain; (2) presenting notation-independent guidelines for the BA domain; and (3) analyzing the possibility of using BP models to perform FSM in the real-time domain. The measurement results obtained from BP models are compared with those of previous FSM case studies.
|
Marta Diaz, Dennys Paillacho, & Cecilio Angulo. (2015). Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. International Journal of Humanoid Robotics, Vol. 12.
Abstract: This paper describes an exploratory study on group interaction with a robot-guide in an open large-scale busy environment. For an entire week a humanoid robot was deployed in the popular Cosmocaixa Science Museum in Barcelona and guided hundreds of people through the museum facilities. The main goal of this experience is to study in the wild the episodes of the robot guiding visitors to a requested destination focusing on the group behavior during displacement. The walking behavior follow-me and the face to face communication in a populated environment are analyzed in terms of guide- visitors interaction, grouping patterns and spatial formations. Results from observational data show that the space configurations spontaneously formed by the robot guide and visitors walking together did not always meet the robot communicative and navigational requirements for successful guidance. Therefore additional verbal and nonverbal prompts must be considered to regulate effectively the walking together and follow-me behaviors. Finally, we discuss lessons learned and recommendations for robot’s spatial behavior in dense crowded scenarios.
|
Juan C. Basurto, P. C. and H. C. (2011). A Proximity-Aware Transparent Handoff Mobility Scheme for VoIP Communication over Infrastructure Mesh Networks. In International Congress of Electronic, Electrical and Systems Engineering-INTERCON 2011.
Abstract: Mobility Management plays a key role in Voice-over- IP (VoIP) communications over Wireless Mesh Networks (WMN) as clients should maintain adequate levels of Quality of Service (QoS) as they move across the network. This paper presents PATH, a Proximity-Aware Transparent Handoff mobility scheme for real time voice communications over wireless mesh networks. Our study focuses on Medium Access Control (MAC) layer procedures and relies on gratuitous ARP unicasting in order to provide fast-handoffs. An experimental evaluation has been conducted and its results are shown in this paper.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images. In International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing (Vol. 721).
Abstract: This paper proposes a novel approach to use cross-spectral
images to achieve a better performance with the proposed Adaptive Harris
corner detector comparing its obtained results with those achieved
with images of the visible spectra. The images of urban, field, old-building
and country category were used for the experiments, given the variety of
the textures present in these images, with which the complexity of the
proposal is much more challenging for its verification. It is a new scope,
which means improving the detection of characteristic points using crossspectral
images (NIR, G, B) and applying pruning techniques, the combination
of channels for this fusion is the one that generates the largest
variance based on the intensity of the merged pixels, therefore, it is that
which maximizes the entropy in the resulting Cross-spectral images.
Harris is one of the most widely used corner detection algorithm, so
any improvement in its efficiency is an important contribution in the
field of computer vision. The experiments conclude that the inclusion of
a (NIR) channel in the image as a result of the combination of the spectra,
greatly improves the corner detection due to better entropy of the
resulting image after the fusion, Therefore the fusion process applied to
the images improves the results obtained in subsequent processes such as
identification of objects or patterns, classification and/or segmentation.
|
Miguel Realpe, Jonathan S. Paillacho Corredores, & Joe Saverio & Allan Alarcon. (2019). Open Source system for identification of corn leaf chlorophyll contents based on multispectral images. In International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador (pp. 572–581).
Abstract: It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.
Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear
regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.
It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.
However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
|