Jorge L. Charco, A. D. S., Boris X. Vintimilla, Henry O. Velesaca. (2022). Human Body Pose Estimation in Multi-view Environments. In ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series (Vol. 224, pp. 79–99).
|
Miguel Oliveira, Vítor Santos, Angel D. Sappa, & Paulo Dias. (2015). Scene representations for autonomous driving: an approach based on polygonal primitives. In Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 (Vol. 417, pp. 503–515). Springer International Publishing Switzerland 2016.
Abstract: In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques.
|
Julien Poujol, Cristhian A. Aguilera, Etienne Danos, Boris X. Vintimilla, Ricardo Toledo, & Angel D. Sappa. (2015). A visible-Thermal Fusion based Monocular Visual Odometry. In Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 (Vol. 417, pp. 517–528).
Abstract: The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach.
|
Carlos Monsalve, Alain April, & Alain Abran. (2011). BPM and requirements elicitation at multiple levels of abstraction: A review. In IADIS International Conference on Information Systems 2011 (pp. 237–242).
Abstract: Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs.
Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs
and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches.
|
Ulises Gildardo Quiroz Antúnez, A. I. M. R., María Fernanda Calderón Vega, Adán Guillermo Ramírez García. (2022). APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE. Granja, Vol. 36(Issue 2).
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Vol. Chapter 9, pp. 205–232).
|
Nayeth I. Solorzano Alcivar, R. L., Stalyn Gonzabay Yagual, & Boris X. Vintimilla. (2020). Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language. In ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 (Vol. 77).
Abstract: This paper explains how Natural Language (NL) processing by computers, through smart
programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written
statements. The study recognized the need to improve the implemented web platform using a
dashboard in which we collected a set of extensive data to measure assessment factors of using
children´s educational games. In this case, applying NL is a strategy to give assessments, build, and
display more precise written statements to enhance the understanding of children´s gaming behavior.
We propose the development of a new tool to assess the use of written explanations rather than a
statistical representation of feedback information for the comprehension of parents and teachers with
a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim
explanations of children´s behavior playing educational videogames as NL interpretation instead of
statistical representations. An educational series of digital game applications for mobile devices,
identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a
dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary
schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing
the degrees of playability and usability factors obtained from the data produced when children play a
MIDI game. The results obtained are presented in a comprehensive guiding evaluation report
applying NL for parents and teachers. These guiding evaluations are useful to enhance children's
learning understanding related to the school curricula applied to ludic digital games.
|
Abel Rubio, W. A., Leandro González & Jonathan Aviles-Cedeno. (2023). Distributed Intelligence in Autonomous PEM Fuel Cell Control. Energies 2023, Vol. 16(Issue 12).
|
Morocho-Cayamcela, M. E. & W. L. (2020). Lateral confinement of high-impedance surface-waves through reinforcement learning. Electronics Letters, Vol. 56(23, 12 November 2020), pp. 1262–1264.
Abstract: The authors present a model-free policy-based reinforcement learning
model that introduces perturbations on the pattern of a metasurface.
The objective is to learn a policy that changes the size of the
patches, and therefore the impedance in the sides of an artificially structured
material. The proposed iterative model assigns the highest reward
when the patch sizes allow the transmission along a constrained path
and penalties when the patch sizes make the surface wave radiate to
the sides of the metamaterial. After convergence, the proposed
model learns an optimal patch pattern that achieves lateral confinement
along the metasurface. Simulation results show that the proposed
learned-pattern can effectively guide the electromagnetic wave
through a metasurface, maintaining its instantaneous eigenstate when
the homogeneity is perturbed. Moreover, the pattern learned to
prevent reflections by changing the patch sizes adiabatically. The
reflection coefficient S1, 2 shows that most of the power gets transferred
from the source to the destination with the proposed design.
|
Morocho-Cayamcela, M. E. (2020). Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling. Electronic Letters on Computer Vision and Image Analysis (ELCVIA), Vol. 19(Issue 2), pp. 17–21.
|