Mónica Villavicencio, & Alain Abran. (2011). Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results. Journal of Software Engineering and Application, , pp. 227–234.
Abstract: How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented.
|
Carlos Monsalve, & Alain April and Alain Abran. (2011). Measuring software functional size from business process models. International Journal of Software Engineering and Knowledge Engineering, Vol. 21, pp. 311–338.
Abstract: ISO 14143-1 specifies that a functional size measurement (FSM) method must provide measurement procedures to quantify the functional user requirements (FURs) of software. Such quantitative information, functional size, is typically used, for instance, in software estimation. One of the international standards for FSM is the COSMIC FSM method — ISO 19761 — which was designed to be applied both to the business application (BA) software domain and to the real-time software domain. A recurrent problem in FSM is the availability and quality of the inputs required for measurement purposes; that is, well documented FURs. Business process (BP) models, as they are commonly used to gather requirements from the early stages of a project, could be a valuable source of information for FSM. In a previous article, the feasibility of such an approach for the BA domain was analyzed using the Qualigram BP modeling notation. This paper complements that work by: (1) analyzing the use of BPMN for FSM in the BA domain; (2) presenting notation-independent guidelines for the BA domain; and (3) analyzing the possibility of using BP models to perform FSM in the real-time domain. The measurement results obtained from BP models are compared with those of previous FSM case studies.
|
Juan C. Basurto, P. C. and H. C. (2011). A Proximity-Aware Transparent Handoff Mobility Scheme for VoIP Communication over Infrastructure Mesh Networks. In International Congress of Electronic, Electrical and Systems Engineering-INTERCON 2011.
Abstract: Mobility Management plays a key role in Voice-over- IP (VoIP) communications over Wireless Mesh Networks (WMN) as clients should maintain adequate levels of Quality of Service (QoS) as they move across the network. This paper presents PATH, a Proximity-Aware Transparent Handoff mobility scheme for real time voice communications over wireless mesh networks. Our study focuses on Medium Access Control (MAC) layer procedures and relies on gratuitous ARP unicasting in order to provide fast-handoffs. An experimental evaluation has been conducted and its results are shown in this paper.
|
Cristina L. Abad, Yi Lu, & Roy H. Campbell. (2011). DARE: Adaptive Data Replication for Efficient Cluster Scheduling. In IEEE International Conference on Cluster Computing, 2011 (pp. 159–168).
Abstract: Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.
|
Xavier Soria, & Angel D. Sappa. (2018). Improving Edge Detection in RGB Images by Adding NIR Channel. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 266–273).
|
Xavier Soria, Angel D. Sappa, & Riad Hammoud. (2018). Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018 ,2059.Vol. 18(Issue 7).
Abstract: Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
Dennis G. Romero, A. F. Neto, T. F. Bastos, & Boris X. Vintimilla. (2012). RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments. In 5th Workshop in applied Robotics and Automation (RoboControl).
Abstract: This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
|
Dennis G. Romero, A. F. Neto, T. F. Bastos, & Boris X. Vintimilla. (2012). An approach to automatic assistance in physiotherapy based on on-line movement identification. In VI Andean Region International Conference – ANDESCON 2012. Andean Region International Conference (ANDESCON), 2012 VI: IEEE.
Abstract: This paper describes a method for on-line movement identification, oriented to patient’s movement evaluation during physiotherapy. An analysis based on Mahalanobis distance between temporal windows is performed to identify the “idle/motion” state, which defines the beginning and end of the patient’s movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
|
A. Amato, F. Lumbreras, & Angel D. Sappa. (2014). A general-purpose crowdsourcing platform for mobile devices. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 (Vol. 3, pp. 211–215). Lisbon, Portugal: IEEE.
Abstract: This paper presents details of a general purpose micro-taskon-demand platform based on the crowdsourcing philosophy. This platformwas specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquityand iii) embedded sensors.The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks.Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and task- solver).Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way.Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications.Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform.
|