|
Sianna Puente, Cindy Madrid, Miguel Realpe, & Boris X. Vintimilla. (2017). An Empirical Comparison of DCNN libraries to implement the Vision Module of a Danger Management System. In 2017 International Conference on Deep Learning Technologies (ICDLT 2017) (Vol. Part F128535, pp. 60–65).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Cross-spectral Image Patch Similarity using Convolutional Neural Network. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–5).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning to Colorize Infrared Images. In 15th International Conference on Practical Applications of Agents and Multi-Agent Systems.
|
|
|
Cristhian A. Aguilera, Xaver Soria, Angel D. Sappa, & Ricardo Toledo. (2017). RGBN Multispectral Images: a Novel Color Restoration Approach. In 15th International Conference on Practical Applications of Agents and Multi-Agent Systems (Vol. 619, pp. 155–163).
|
|
|
Angel J. Valencia, Roger M. Idrovo, Angel D. Sappa, Douglas Plaza G., & Daniel Ochoa. (2017). A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–6).
|
|
|
Dennis G. Romero, Roberto Yoncon, Angel Guale, Bonny Bayot, & Fanny Panchana. (2017). Evaluación de técnicas de clasificación orientadas a la identificación automática de órganos del camarón a partir de imágenes histológicas. In 15th LACCEI International Multi-Conference for Engineering, Education, and Technology (Vol. 2017-July, pp. 1–6).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Infrared Image Colorization based on a Triplet DCGAN Architecture. In 13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ) (Vol. 2017-July, pp. 212–217).
|
|
|
Jorge L. Charco, Boris X. Vintimilla, & Angel D. Sappa. (2018). Deep learning based camera pose estimation in multi-view environment. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 224–228).
Abstract: This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
|
|
|
Alex Ferrin, Julio Larrea, Miguel Realpe, & Daniel Ochoa. (2018). Detection of utility poles from noisy Point Cloud Data in Urban environments. In Artificial Intelligence and Cloud Computing Conference (AICCC 2018) (pp. 53–57).
Abstract: In recent years 3D urban maps have become more common, thus providing complex point clouds that include diverse urban furniture such as pole-like objects. Utility poles detection in urban environment is of particular interest for electric utility companies in order to maintain an updated inventory for better planning and management. The present study develops an automatic method for the detection of utility poles from noisy point cloud data of Guayaquil – Ecuador, where many poles are located next to buildings, or houses are built until the border of the sidewalk getting very close to poles, which increases the difficulty of discriminating poles, walls, columns, fences and building corners.
|
|
|
Armin Mehri, & Angel D. Sappa. (2019). Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States (pp. 971–979).
Abstract: This paper presents a novel approach for colorizing
near infrared (NIR) images. The approach is based on
image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored
networks that require less computation times, converge
faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation
metrics—and qualitatively evaluated showing considerable
improvements with respect to the state of the art
|
|