Velesaca, H. O., Suárez, P. L., Mira, R., & Sappa, A.D. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. In Computers and Electronics in Agriculture Journal. (Article number 106287), Vol. 187.
|
Henry O. Velesaca, P. L. S., Dario Carpio, and Angel D. Sappa. (2021). Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13017, pp. 131–143).
|
Patricia L. Suárez, D. C., and Angel Sappa. (2021). Non-Homogeneous Haze Removal through a Multiple Attention Module Architecture. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13018, pp. 178–190).
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
Velesaca, H. O., Suárez, P. L., Sappa, A. D., Carpio, D., Rivadeneira, R. E., & Sanchez, A. (2022). Review on Common Techniques for Urban Environment Video Analytics. In WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI 2022) (pp. 107–118).
|
Pereira J., M. M. & W. A. (2021). Qualitative Model to Maximize Shrimp Growth at Low Cost. 5th Ecuador Technical Chapters Meeting (ETCM 2021), Octubre 12 – 15, .
|
Xavier Soria, G. P. - J. & A. S. (2022). LDC: Lightweight Dense CNN for Edge Detection. IEEE Access journal, Vol. 10, pp. 68281–68290.
|
Rivadeneira, R. E., & Sappa, A. D. and V. B. X. (2022). Thermal Image Super-Resolution: A Novel Unsupervised Approach. In Communications in Computer and Information Science, 15th International Communications in Computer and Information Science Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 1474, pp. 495–506).
|
Rafael E. Rivadeneira, A. D. S., Boris X. Vintimilla, Jin Kim, Dogun Kim et al. (2022). Thermal Image Super-Resolution Challenge Results- PBVS 2022. In Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 349–357).
Abstract: This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic.
|
Rangnekar, A., Mulhollan, Z., Vodacek, A., Hoffman, M., Sappa, A. D., & Yu, J. et al. (2022). Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. In Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 389–397).
|