Rangnekar, A., Mulhollan, Z., Vodacek, A., Hoffman, M., Sappa, A. D., & Yu, J. et al. (2022). Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. In Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 389–397).
|
Suarez Patricia, Carpio Dario, & Sappa Angel D. (2023). A Deep Learning Based Approach for Synthesizing Realistic Depth Maps. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 22nd International Conference on Image Analysis and Processing, ICIAP 2023 Udine 11 – 15 September 2023 (Vol. 14234 LNCS, pp. 369–380).
|
Wilton Agila, G. R., Raul M. del Toro, Livington Miranda. (2023). Qualitative model for an oxygen therapy system based on Renewable Energy. In 12th International Conference on Renewable Energy Research and Applications (ICRERA 2023) Oshawa 29 August – 1 September 2023 (365–371).
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Vegetation Index Estimation from Monospectral Images. In 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science (Vol. 10882, pp. 353–362).
Abstract: This paper proposes a novel approach to estimate Normalized
Difference Vegetation Index (NDVI) from just the red channel of
a RGB image. The NDVI index is defined as the ratio of the difference
of the red and infrared radiances over their sum. In other words, information
from the red channel of a RGB image and the corresponding
infrared spectral band are required for its computation. In the current
work the NDVI index is estimated just from the red channel by training a
Conditional Generative Adversarial Network (CGAN). The architecture
proposed for the generative network consists of a single level structure,
which combines at the final layer results from convolutional operations
together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the
training dataset, rather than the index automatically generated. Experimental
results with a large set of real images are provided showing that
a Conditional GAN single level model represents an acceptable approach
to estimate NDVI index.
|
Rafael E. Rivadeneira, A. D. S., Boris X. Vintimilla, Jin Kim, Dogun Kim et al. (2022). Thermal Image Super-Resolution Challenge Results- PBVS 2022. In Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 349–357).
Abstract: This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic.
|
Patricia L. Suarez, D. C., Angel Sappa. (2023). Depth Map Estimation from a Single 2D Image. In 17th International Conference On Signal Image Technology & Internet Based Systems, Bangkok, 8-10 November 2023 (pp. 347–353).
|
Dennis G. Romero, A. Frizera, Angel D. Sappa, Boris X. Vintimilla, & T.F. Bastos. (2015). A predictive model for human activity recognition by observing actions and context. In ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 (pp. 323–333).
Abstract: This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
|
Velez R., P. A., Silva S., Paillacho D., and Paillacho J. (2022). Implementation of a UVC lights disinfection system for a diferential robot applying security methods in indoor. In Communications in Computer and Information Science, International Conference on Applied Technologies (ICAT 2021), octubre 27-29 (Vol. 1535, pp. 319–331).
|
Miguel Oliveira, Vítor Santos, Angel D. Sappa, Paulo Dias, & A. Paulo Moreira. (2016). Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives. Robotics and Autonomous Systems Journal, Vol. 83, pp. 312–325.
Abstract: When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
|