Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Cross-spectral Image Patch Similarity using Convolutional Neural Network. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–5).
|
Angel J. Valencia, Roger M. Idrovo, Angel D. Sappa, Douglas Plaza G., & Daniel Ochoa. (2017). A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–6).
|
Dennis G. Romero, Roberto Yoncon, Angel Guale, Bonny Bayot, & Fanny Panchana. (2017). Evaluación de técnicas de clasificación orientadas a la identificación automática de órganos del camarón a partir de imágenes histológicas. In 15th LACCEI International Multi-Conference for Engineering, Education, and Technology (Vol. 2017-July, pp. 1–6).
|
Marjorie Chalen, & Boris X. Vintimilla. (2019). Towards Action Prediction Applying Deep Learning. Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019, , pp. 1–3.
Abstract: Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.
|
Raul A. Mira, Patricia L. Suarez, Rafael E. Rivadeneira, & Angel D. Sappa. (2019). PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–6).
Abstract: This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different
communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
|
W. Agila, Gomer Rubio, L. Miranda, & D. Sanaguano. (2019). Open Control Architecture for the Characterization and Control of the PEM Fuel Cell. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–5).
Abstract: Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.
|
Cristhian A. Aguilera, C. A., Cristóbal A. Navarro, & Angel D. Sappa. (2020). Fast CNN Stereo Depth Estimation through Embedded GPU Devices. Sensors 2020, Vol. 2020-June(11), pp. 1–13.
Abstract: Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices.
|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
Rafael Rivadeneira, H. V. & A. S. (2024). Cross-Spectral Image Registration: a Comparative Study and a New Benchmark Dataset. In Lecture Notes in Networks and Systems: 4th International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024) (Vol. Vol. 1117 LNNS, pp. 1–12).
|
Luis Chuquimarca, B. V. & S. V. (2024). A Review of External Quality Inspection for Fruit Grading using CNN Models (Vol. Vol. 14).
|