Juca Aulestia M., L. J. M., Guaman Quinche J., Coronel Romero E., Chamba Eras L., & Roberto Jacome Galarza. (2020). Open innovation at university: a systematic literature review. Advances in Intelligent Systems and Computing, 1159 AISC, 2020, 3–14.
|
Lukas Danev, Marten Hamann, Nicolas Fricke, Tobias Hollarek, & Dennys Paillacho. (2017). Development of animated facial expression to express emotions in a robot: RobotIcon. In IEEE Ecuador Technical Chapter Meeting (ETCM) (Vol. 2017-January, pp. 1–6).
|
Xavier Soria, Angel D. Sappa, & Arash Akbarinia. (2017). Multispectral Single-Sensor RGB-NIR Imaging: New Challenges an Oppotunities. In The 7th International Conference on Image Processing Theory, Tools and Application (pp. 1–6).
|
Milton Mendieta, F. Panchana, B. Andrade, B. Bayot, C. Vaca, Boris X. Vintimilla, et al. (2018). Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. In IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador (pp. 1–6).
Abstract: The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-
Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem.
|
Arias Alexandra. Ing., Peña Roxanna. Ing., Chávez Patricia. MSEE., & Basurto Juan. Ing. (2011). Análisis Comparativo de la Implementación de una PBX de Código Abierto instalada en un Servidor Tradicional y en un Enrutador Inalámbrico en términos de Calidad de Servicio en Redes Inalámbricas Amalladas. Revista Tecnologica ESPOL RTE, Vol. 24, pp. 1–6.
Abstract: El presente trabajo compara dos Implementaciones de Centrales Telefónicas VoIP de Código Abierto implementados sobre una Red Inalámbrica Amallada. El primero comprende la instalación de la PBX en un servidor tradicional y el segundo la instalación de una PBX en un enrutador inalámbrico. Nuestro objetivo es
determinar cuál de estos dos sistemas es superior en cuanto a calidad de servicio se refiere. Para determinar la mejor solución, realizamos un estudio técnico de los paquetes capturados durante diferentes pruebas, considerando parámetros como el ancho de banda, retardo y jitter. Nuestros métodos de análisis pueden ser utilizados para futuros trabajos con una mayor complejidad y número de enrutadores inalámbrico, así como establecer el grado de afectación y el comportamiento de las dos PBX cuando haya congestión en la red.
|
Ma. Paz Velarde, Erika Perugachi, Dennis G. Romero, Ángel D. Sappa, & Boris X. Vintimilla. (2015). Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. Revista Tecnológica ESPOL-RTE, Vol. 28, pp. 1–7.
Abstract: Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores.
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2015). Sensor Fault Detection and Diagnosis for autonomous vehicles. In 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 (Vol. 30, pp. 1–6). EDP Sciences.
Abstract: In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
|
Angel D. Sappa, Juan A. Carvajal, Cristhian A. Aguilera, Miguel Oliveira, Dennis G. Romero, & Boris X. Vintimilla. (2016). Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study. Sensors Journal, Vol. 16, pp. 1–15.
Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and LongWave InfraRed (LWIR).
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2016). A Fault Tolerant Perception system for autonomous vehicles. In 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu (pp. 1–6).
Abstract: Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
|
Juan A. Carvajal, Dennis G. Romero, & Angel D. Sappa. (2016). Fine-tuning based deep covolutional networks for lepidopterous genus recognition. In XXI IberoAmerican Congress on Pattern Recognition (pp. 1–9).
Abstract: This paper describes an image classication approach ori- ented to identify specimens of lepidopterous insects recognized at Ecuado- rian ecological reserves. This work seeks to contribute to studies in the area of biology about genus of butter ies and also to facilitate the reg- istration of unrecognized specimens. The proposed approach is based on the ne-tuning of three widely used pre-trained Convolutional Neural Networks (CNNs). This strategy is intended to overcome the reduced number of labeled images. Experimental results with a dataset labeled by expert biologists, is presented|a recognition accuracy above 92% is reached. 1 Introductio
|