Armin Mehri, P. B., Dario Carpio, and Angel D. Sappa. (2023). SRFormer: Efficient Yet Powerful Transformer Network For Single Image Super Resolution. IEEE access, Vol. 11, 121457–121469.
|
Xavier Soria, G. P. - J. & A. S. (2022). LDC: Lightweight Dense CNN for Edge Detection. IEEE Access journal, Vol. 10, pp. 68281–68290.
|
Henry O. Velesaca, G. B., Mohammad Rouhani, Angel D. Sappa. (2024). Multimodal image registration techniques: a comprehensive survey. Multimedia Tools and Applications, Vol. 83, 63919–63947.
|
Leo Ramos & Angel D. Sappa. (2024). Multispectral Semantic Segmentation for Land Cover Classification: An Overview (Vol. Vol. 17).
|
Armin Mehri, Parichehr Behjati, & Angel Domingo Sappa. (2023). TnTViT-G: Transformer in Transformer Network for Guidance Super Resolution. IEEE Access, Vol. 11.
|
Steven Silva, N. V., Dennys Paillacho, Samuel Millan-Norman & Juan David Hernandez. (2023). Online Social Robot Navigation in Indoor, Large and Crowded Environments. In IEEE International Conference on Robotics and Automation (ICRA 2023) Londres, 29 may 2023 – 2 jun 2023 (Vol. 2023-May, pp. 9749–9756).
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
Rivadeneira R.E., S. A. D., Vintimilla B.X., Nathan S., Kansal P., Mehri A et al. (2021). Thermal Image Super-Resolution Challenge – PBVS 2021. In In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021., junio 19 – 25, 2021 (pp. 4354–4362).
|
Ricaurte P, Chilán C, Cristhian A. Aguilera, Boris X. Vintimilla, & Angel D. Sappa. (2014). Feature Point Descriptors: Infrared and Visible Spectra. Sensors Journal, Vol. 14, pp. 3690–3701.
Abstract: This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|