Wilton Agila, Gomer Rubio, Francisco Vidal, & B. Lima. (2019). Real time Qualitative Model for estimate Water content in PEM Fuel Cell. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 455–459).
Abstract: To maintain optimum performance of the electrical
response of a fuel cell, a real time identification of the
malfunction situations is required. Critical fuel cell states depend,
among others, on the variable demand of electric load and are
directly related to the membrane hydration level. The real time
perception of relevant states in the PEM fuel cell states space, is
still a challenge for the PEM fuel cell control systems. Current
work presents the design and implementation of a methodology
based upon fuzzy decision techniques that allows real time
characterization of the dehydration and flooding states of a PEM
fuel cell. Real time state estimation is accomplished through a
perturbation-perception process on the PEM fuel cell and further
on voltage oscillation analysis. The real time implementation of
the perturbation-perception algorithm to detect PEM fuel cell
critical states is a novelty and a step forwards the control of the
PEM fuel cell to reach and maintain optimal performance.
|
G.A. Rubio, & Wilton Agila. (2019). Sustainable Energy: A Strategic View of Fuel Cells. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 239–243).
Abstract: Based on the model of the proton exchange fuel cell in a strategic context,
this document develops the issue of energy as one of the pillars to achieve the
sustainability of our planet, considering the future scenarios up to the year 2060 of the
situation energy, hydrogen as a strategic vector and the contribution of the fuel cell in
solving the serious problems of environmental pollution and economic inequity that
humanity faces; for its application in the energy generation, telecommunications and
vehicle manufacturing industries.
|
G.A. Rubio, & Wilton Agila. (2019). Transients analysis in Proton Exchange Membrane Fuel Cells: A critical review. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania (pp. 249–252).
Abstract: When a proton exchange fuel cell operates it produces in addition to electrical
energy, heat and water as sub products, which impact on the performance of the cell. This
paper analyzes the issue of transients and proposes a model that describes the dynamic
operation of the fuel cell. The model considers the transients produced by electrochemical
reactions, by flow water and by heat transfer. Two-phase flow transients result in
increased the parasitic power losses and thermal transients may result in flooding or dryout of the GDL and membrane, understanding transient behavior is critical for reliable
and predictable performance from the cell.
|
Raul A. Mira, Patricia L. Suarez, Rafael E. Rivadeneira, & Angel D. Sappa. (2019). PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–6).
Abstract: This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different
communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
|
Sebastián Fuenzalida, Keyla Toapanta, Jonathan S. Paillacho Corredores, & Dennys Paillacho. (2019). Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador.
Abstract: This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,
called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric
relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
|
Stalin Francis Quinde. (2019). Un nuevo modelo BM3D-RNCA para mejorar la estimación de la imagen libre de ruido producida por el método BM3D. (Ph.D. Angel Sappa, Director.). M.Sc. thesis. In Ediciones FIEC-ESPOL.
|
Shendry Rosero Vásquez. (2019). Reconocimiento facial: técnicas tradicionales y técnicas de aprendizaje profundo, un análisis. (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). M.Sc. thesis. In Ediciones FIEC-ESPOL.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2019). Image patch similarity through a meta-learning metric based approach. In 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia (pp. 511–517).
Abstract: Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
|
Miguel Realpe, Jonathan S. Paillacho Corredores, & Joe Saverio & Allan Alarcon. (2019). Open Source system for identification of corn leaf chlorophyll contents based on multispectral images. In International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador (pp. 572–581).
Abstract: It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.
Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear
regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.
It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.
However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
|
W. Agila, Gomer Rubio, L. Miranda, & D. Sanaguano. (2019). Open Control Architecture for the Characterization and Control of the PEM Fuel Cell. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador (pp. 1–5).
Abstract: Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.
|