P. Ricaurte, C. Chilán, C. A. Aguilera-Carrasco, B. X. Vintimilla, & Angel D. Sappa. (2014). Performance Evaluation of Feature Point Descriptors in the Infrared Domain. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2013 (Vol. 1, pp. 545–550). IEEE.
Abstract: This paper presents a comparative evaluation of classical feature point descriptors when they are used in the long-wave infrared spectral band. Robustness to changes in rotation, scaling, blur, and additive noise are evaluated using a state of the art framework. Statistical results using an outdoor image data set are presented together with a discussion about the differences with respect to the results obtained when images from the visible spectrum are considered.
|
Pabelco Zambrano, F. C., Héctor Villegas, Jonathan Paillacho, Doménica Pazmiño, Miguel Realpe. (2023). UAV Remote Sensing applications and current trends in crop monitoring and diagnostics: A Systematic Literature Review. In IEEE 13th International Conference on Pattern Recognition Systems (ICPRS) 2023, 4-7 julio 2023.
|
Patricia L. Suarez. (2020). Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. In Ediciones FIEC-ESPOL..
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Vol. Chapter 9, pp. 205–232).
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|
Patricia L. Suárez, D. C., and Angel Sappa. (2021). Non-Homogeneous Haze Removal through a Multiple Attention Module Architecture. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13018, pp. 178–190).
|
Patricia L. Suarez, D. C., Angel D. Sappa. (2024). Enhancement of Guided Thermal Image Super-Resolution Approaches (Vol. 573).
|
Patricia L. Suarez, D. C., Angel D. Sappa and Henry O. Velesaca. (2022). Transformer based Image Dehazing. In 16TH International Conference On Signal Image Technology & Internet Based Systems SITIS 2022. (pp. 148–154).
|
Patricia L. Suarez, D. C., Angel Sappa. (2023). Boosting Guided Super-Resolution Performance with Synthesized Images. In 17th International Conference On Signal Image Technology & Internet Based Systems, Bangkok, 8-10 November 2023 (pp. 189–195).
|
Patricia L. Suarez, D. C., Angel Sappa. (2023). Depth Map Estimation from a Single 2D Image. In 17th International Conference On Signal Image Technology & Internet Based Systems, Bangkok, 8-10 November 2023 (pp. 347–353).
|