Nayeth I. Solorzano, L. C. H., Leslie del R. Lima, Dennys F. Paillacho & Jonathan S. Paillacho. (2022). Visual Metrics for Educational Videogames Linked to Socially Assistive Robots in an Inclusive Education Framework. In Smart Innovation, Systems and Technologies. International Conference in Information Technology & Education (ICITED 21), julio 15-17 (Vol. 256, pp. 119–132).
Abstract: In gamification, the development of "visual metrics for educational
video games linked to social assistance robots in the framework of inclusive education" seeks to provide support, not only to regular children but also to children with specific psychosocial disabilities, such as those diagnosed with autism spectrum disorder (ASD). However, personalizing each child's experiences represents a limitation, especially for those with atypical behaviors. 'LOLY,' a social assistance robot, works together with mobile applications associated with the family of educational video game series called 'MIDI-AM,' forming a social robotic platform. This platform offers the user curricular digital content to reinforce the teaching-learning processes and motivate regular children and those with ASD. In the present study, technical, programmatic experiments and focus groups were carried out, using open-source facial recognition algorithms to monitor and evaluate the degree of user attention throughout the interaction. The objective is to evaluate the management of a social robot linked to educational video games
through established metrics, which allow monitoring the user's facial expressions
during its use and define a scenario that ensures consistency in the results for its applicability in therapies and reinforcement in the teaching process, mainly
adaptable for inclusive early childhood education.
|
Nayeth I. Solorzano Alcivar, R. L., Stalyn Gonzabay Yagual, & Boris X. Vintimilla. (2020). Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language. In ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 (Vol. 77).
Abstract: This paper explains how Natural Language (NL) processing by computers, through smart
programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written
statements. The study recognized the need to improve the implemented web platform using a
dashboard in which we collected a set of extensive data to measure assessment factors of using
children´s educational games. In this case, applying NL is a strategy to give assessments, build, and
display more precise written statements to enhance the understanding of children´s gaming behavior.
We propose the development of a new tool to assess the use of written explanations rather than a
statistical representation of feedback information for the comprehension of parents and teachers with
a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim
explanations of children´s behavior playing educational videogames as NL interpretation instead of
statistical representations. An educational series of digital game applications for mobile devices,
identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a
dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary
schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing
the degrees of playability and usability factors obtained from the data produced when children play a
MIDI game. The results obtained are presented in a comprehensive guiding evaluation report
applying NL for parents and teachers. These guiding evaluations are useful to enhance children's
learning understanding related to the school curricula applied to ludic digital games.
|
N. Onkarappa, Cristhian A. Aguilera, B. X. Vintimilla, & Angel D. Sappa. (2014). Cross-spectral Stereo Correspondence using Dense Flow Fields. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 (Vol. 3, pp. 613–617). IEEE.
Abstract: This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach.
|
Morocho-Cayamcela, M. E. & W. L. (2020). Lateral confinement of high-impedance surface-waves through reinforcement learning. Electronics Letters, Vol. 56(23, 12 November 2020), pp. 1262–1264.
Abstract: The authors present a model-free policy-based reinforcement learning
model that introduces perturbations on the pattern of a metasurface.
The objective is to learn a policy that changes the size of the
patches, and therefore the impedance in the sides of an artificially structured
material. The proposed iterative model assigns the highest reward
when the patch sizes allow the transmission along a constrained path
and penalties when the patch sizes make the surface wave radiate to
the sides of the metamaterial. After convergence, the proposed
model learns an optimal patch pattern that achieves lateral confinement
along the metasurface. Simulation results show that the proposed
learned-pattern can effectively guide the electromagnetic wave
through a metasurface, maintaining its instantaneous eigenstate when
the homogeneity is perturbed. Moreover, the pattern learned to
prevent reflections by changing the patch sizes adiabatically. The
reflection coefficient S1, 2 shows that most of the power gets transferred
from the source to the destination with the proposed design.
|
Morocho-Cayamcela, M. E. (2020). Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling. Electronic Letters on Computer Vision and Image Analysis (ELCVIA), Vol. 19(Issue 2), pp. 17–21.
|
Mónica Villavicencio, & Alain Abran. (2011). Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results. Journal of Software Engineering and Application, , pp. 227–234.
Abstract: How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented.
|
Monica Villavicencio, & Alain Abran. (2011). Educational Issues in the Teaching of Software Measurement in Software Engineering Undergraduate Programs. In Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (pp. 239–244). IEEE.
Abstract: In mature engineering disciplines and science, mathematics and measurement are considered as important subjects to be taught in university programs. This paper discusses about these subjects in terms of their respective meanings and complementarities. It also presents a discussion regarding their maturity, relevance and innovations in their teaching in engineering programs. This paper pays special attention to the teaching of software measurement in higher education, in particular with respect to mathematics and measurement in engineering in general. The findings from this analysis will be useful for researchers and educators interested in the enhancement of educational issues related to software measurement.
|
Milton Mendieta, F. Panchana, B. Andrade, B. Bayot, C. Vaca, Boris X. Vintimilla, et al. (2018). Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. In IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador (pp. 1–6).
Abstract: The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-
Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem.
|
Mildred Cruz, Cristhian A. Aguilera, Boris X. Vintimilla, Ricardo Toledo, & Ángel D. Sappa. (2015). Cross-spectral image registration and fusion: an evaluation study. In 2nd International Conference on Machine Vision and Machine Learning (Vol. 331). Barcelona, Spain: Computer Vision Center.
Abstract: This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
|
Miguel Realpe, Jonathan S. Paillacho Corredores, & Joe Saverio & Allan Alarcon. (2019). Open Source system for identification of corn leaf chlorophyll contents based on multispectral images. In International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador (pp. 572–581).
Abstract: It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.
Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear
regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.
It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.
However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
|