Suárez P. (2021). Processing and Representation of Multispectral Images Using Deep Learning Techniques. In Electronic Letters on Computer Vision and Image Analysis, Vol. 19(Issue 2), pp. 5–8.
|
Dennys Paillacho, Nayeth I. Solorzano Alcivar, & Jonathan S. Paillacho Corredores. (2021). LOLY 1.0: A Proposed Human-Robot-Game Platform Architecture for the Engagement of Children with Autism in the Learning Process. In The international Conference on Systems and Information Sciences (ICCIS 2020), julio 27-29. Advances in Intelligent Systems and Computing. (Vol. 1273, pp. 225–238).
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
Velesaca, H. O., Suárez, P. L., Sappa, A. D., Carpio, D., Rivadeneira, R. E., & Sanchez, A. (2022). Review on Common Techniques for Urban Environment Video Analytics. In WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI 2022) (pp. 107–118).
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla. (2022). Human Pose Estimation through A Novel Multi-View Scheme. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.
|
Xavier Soria, G. P. - J. & A. S. (2022). LDC: Lightweight Dense CNN for Edge Detection. IEEE Access journal, Vol. 10, pp. 68281–68290.
|