Ma. Paz Velarde, Erika Perugachi, Dennis G. Romero, Ángel D. Sappa, & Boris X. Vintimilla. (2015). Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. Revista Tecnológica ESPOL-RTE, Vol. 28, pp. 1–7.
Abstract: Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores.
|
Cristhian A. Aguilera, Angel D. Sappa, & R. Toledo. (2015). LGHD: A feature descriptor for matching across non-linear intensity variations. In IEEE International Conference on, Quebec City, QC, 2015 (pp. 178–181). Quebec City, QC, Canada: IEEE.
Abstract: This paper presents a new feature descriptor suitable to the task of matching features points between images with nonlinear intensity variations. This includes image pairs with significant illuminations changes, multi-modal image pairs and multi-spectral image pairs. The proposed method describes the neighbourhood of feature points combining frequency and spatial information using multi-scale and multi-oriented Log- Gabor filters. Experimental results show the validity of the proposed approach and also the improvements with respect to the state of the art.
|
M. Oliveira, L. Seabra Lopes, G. Hyun Lim, S. Hamidreza Kasaei, Angel D. Sappa, & A. Tomé. (2015). Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 (pp. 2488–2495). Hamburg, Germany: IEEE.
Abstract: In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2015). Sensor Fault Detection and Diagnosis for autonomous vehicles. In 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 (Vol. 30, pp. 1–6). EDP Sciences.
Abstract: In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
|
Dennis G. Romero, A. Frizera, Angel D. Sappa, Boris X. Vintimilla, & T.F. Bastos. (2015). A predictive model for human activity recognition by observing actions and context. In ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 (pp. 323–333).
Abstract: This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
|
Julien Poujol, Cristhian A. Aguilera, Etienne Danos, Boris X. Vintimilla, Ricardo Toledo, & Angel D. Sappa. (2015). A visible-Thermal Fusion based Monocular Visual Odometry. In Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 (Vol. 417, pp. 517–528).
Abstract: The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach.
|
Miguel Oliveira, Vítor Santos, Angel D. Sappa, & Paulo Dias. (2015). Scene representations for autonomous driving: an approach based on polygonal primitives. In Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 (Vol. 417, pp. 503–515). Springer International Publishing Switzerland 2016.
Abstract: In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques.
|
Wilton Agila, Ricardo Cajo, & Douglas Plaza. (2015). Experts Agents in PEM Fuel Cell Control. In 4ta International Conference on Renewable Energy Research and Applications (pp. 896–900). Palermo, Italy: IEEE.
Abstract: In the control of the PEM (Proton Exchange Membrane) fuel cell, the existence of both deliberative and reactive processes that facilitate the tasks of control resulting from a wide range of operating scenarios and range of conditions it is required. The latter is essential to adjust its parameters to the multiplicity of circumstances that may occur in the operation of the PEM stack. In this context, the design and development of an expert-agents based architecture for autonomous control of the PEM stack in top working conditions is presented. The architecture integrates perception and control algorithms using sensory and context information. It is structured in a hierarchy of levels with different time window and level of abstraction. The monitoring model and autonomic control of PEM stack has been validated with different types of PEM stacks and operating conditions demonstrating high reliability in achieving the objective of the proposed energy efficiency. Dynamic control of the wetting of the membrane is a clear example.
|
Angel D. Sappa, Juan A. Carvajal, Cristhian A. Aguilera, Miguel Oliveira, Dennis G. Romero, & Boris X. Vintimilla. (2016). Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study. Sensors Journal, Vol. 16, pp. 1–15.
Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and LongWave InfraRed (LWIR).
|
Cristhian A. Aguilera, Francisco J. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2016). Learning crossspectral similarity measures with deep convolutional neural networks. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (pp. 267–275).
Abstract: The simultaneous use of images from different spectra can be helpful to improve the performance of many com- puter vision tasks. The core idea behind the usage of cross- spectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN archi- tectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Ex- perimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Ad- ditionally, our experiments show that some CNN architec- tures are capable of generalizing between different cross- spectral domains.
|