Xavier Soria, & Angel D. Sappa. (2018). Improving Edge Detection in RGB Images by Adding NIR Channel. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 266–273).
|
Xavier Soria, Angel D. Sappa, & Riad Hammoud. (2018). Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018 ,2059.Vol. 18(Issue 7).
Abstract: Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
Dennis G. Romero, A. F. Neto, T. F. Bastos, & Boris X. Vintimilla. (2012). RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments. In 5th Workshop in applied Robotics and Automation (RoboControl).
Abstract: This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
|
Dennis G. Romero, A. F. Neto, T. F. Bastos, & Boris X. Vintimilla. (2012). An approach to automatic assistance in physiotherapy based on on-line movement identification. In VI Andean Region International Conference – ANDESCON 2012. Andean Region International Conference (ANDESCON), 2012 VI: IEEE.
Abstract: This paper describes a method for on-line movement identification, oriented to patient’s movement evaluation during physiotherapy. An analysis based on Mahalanobis distance between temporal windows is performed to identify the “idle/motion” state, which defines the beginning and end of the patient’s movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
|
A. Amato, F. Lumbreras, & Angel D. Sappa. (2014). A general-purpose crowdsourcing platform for mobile devices. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 (Vol. 3, pp. 211–215). Lisbon, Portugal: IEEE.
Abstract: This paper presents details of a general purpose micro-taskon-demand platform based on the crowdsourcing philosophy. This platformwas specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquityand iii) embedded sensors.The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks.Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and task- solver).Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way.Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications.Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform.
|
P. Ricaurte, C. Chilán, C. A. Aguilera-Carrasco, B. X. Vintimilla, & Angel D. Sappa. (2014). Performance Evaluation of Feature Point Descriptors in the Infrared Domain. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2013 (Vol. 1, pp. 545–550). IEEE.
Abstract: This paper presents a comparative evaluation of classical feature point descriptors when they are used in the long-wave infrared spectral band. Robustness to changes in rotation, scaling, blur, and additive noise are evaluated using a state of the art framework. Statistical results using an outdoor image data set are presented together with a discussion about the differences with respect to the results obtained when images from the visible spectrum are considered.
|
N. Onkarappa, Cristhian A. Aguilera, B. X. Vintimilla, & Angel D. Sappa. (2014). Cross-spectral Stereo Correspondence using Dense Flow Fields. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 (Vol. 3, pp. 613–617). IEEE.
Abstract: This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach.
|
Ricaurte P, Chilán C, Cristhian A. Aguilera, Boris X. Vintimilla, & Angel D. Sappa. (2014). Feature Point Descriptors: Infrared and Visible Spectra. Sensors Journal, Vol. 14, pp. 3690–3701.
Abstract: This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
|
M. Diaz, Dennys Paillacho, C. Angulo, O. Torres, J. Gonzálalez, & J. Albo Canals. (2014). A Week-long Study on Robot-Visitors Spatial Relationships during Guidance in a Sciences Museum. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 152–153).
Abstract: In order to observe spatial relationships in social human- robot interactions, a field trial was carried out within the CosmoCaixa Science Museum in Barcelona. The follow me episodes studied showed that the space configurations formed by guide and visitors walking together did not always fit the robot social affordances and navigation requirements to perform the guidance successfully, thus additional commu- nication prompts are considered to regulate effectively the walking together and follow me behaviors.
|