|
Angel Morera, Angel Sánchez, Angel D. Sappa, & José F. Vélez. (2019). Robust Detection of Outdoor Urban Advertising Panels in Static Images. In 17th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2019); Ávila, España. Communications in Computer and Information Science (Vol. 1047, pp. 246–256).
Abstract: One interesting publicity application for Smart City environments is recognizing brand information contained in urban advertising
panels. For such a purpose, a previous stage is to accurately detect and
locate the position of these panels in images. This work presents an effective solution to this problem using a Single Shot Detector (SSD) based
on a deep neural network architecture that minimizes the number of
false detections under multiple variable conditions regarding the panels and the scene. Achieved experimental results using the Intersection
over Union (IoU) accuracy metric make this proposal applicable in real
complex urban images.
|
|
|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
|