Omar Coello, M. C., Darío Carpio, Boris X. Vintimilla & Luis Chuquimarca. (2024). Enhancing Apple’s Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging. In 14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024.
|
Luis Chuquimarca, B. X. V. & S. V. (2024). Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models. In 14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024.
|
Emmanuel F. Morán, B. X. V., Miguel A. Realpe. (2024). Towards a Robust Solution for the Supermarket Shelf Audit Problem: Obsolete Price Tags in Shelves. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 26th Iberoamerican Congress on Pattern Recognition, CIARP 2023 Coimbra 27 – 30 November 2023 (Vol. Vol. 14470, 257–271).
|
Rafael E. Rivadeneira, A. D. S., Boris X. Vintimilla, Chenyang Wang, Junjun Jiang, Xianming Liu, Zhiwei Zhong, Dai Bin, Li Ruodi, Li Shengye. (2023). Thermal Image Super-Resolution Challenge Results – PBVS 2023. In 19th IEEE Workshop on Perception Beyond the Visible Spectrum de la Conferencia Computer Vision & Pattern Recognition (CVPR 2023) Vancouver, 18-28 junio 2023 (Vol. 2023-June, pp. 470–478).
|
Rafael E. Rivadeneira, A. D. S. and B. X. V. (2022). Multi-Image Super-Resolution for Thermal Images. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 4, pp. 635–642).
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla. (2022). Human Pose Estimation through A Novel Multi-View Scheme. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.
|
Rafael E. Rivadeneira, A. D. S., Boris X. Vintimilla, Jin Kim, Dogun Kim et al. (2022). Thermal Image Super-Resolution Challenge Results- PBVS 2022. In Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 349–357).
Abstract: This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic.
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla, Henry O. Velesaca. (2022). Human Body Pose Estimation in Multi-view Environments. In ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series (Vol. 224, pp. 79–99).
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Vol. Chapter 9, pp. 205–232).
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|