|
Jorge L. Charco, Boris X. Vintimilla, & Angel D. Sappa. (2018). Deep learning based camera pose estimation in multi-view environment. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 224–228).
Abstract: This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
|
|
|
Julien Poujol, Cristhian A. Aguilera, Etienne Danos, Boris X. Vintimilla, Ricardo Toledo, & Angel D. Sappa. (2015). A visible-Thermal Fusion based Monocular Visual Odometry. In Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 (Vol. 417, pp. 517–528).
Abstract: The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach.
|
|
|
Luis Chuquimarca, B. X. V. & S. V. (2024). Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models. In 14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024.
|
|
|
Ma. Paz Velarde, Erika Perugachi, Dennis G. Romero, Ángel D. Sappa, & Boris X. Vintimilla. (2015). Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. Revista Tecnológica ESPOL-RTE, Vol. 28, pp. 1–7.
Abstract: Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores.
|
|
|
Marjorie Chalen, & Boris X. Vintimilla. (2019). Towards Action Prediction Applying Deep Learning. Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019, , pp. 1–3.
Abstract: Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & L. Vlacic. (2015). Towards Fault Tolerant Perception for autonomous vehicles: Local Fusion. In IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, 2015. (pp. 253–258).
Abstract: Many robust sensor fusion strategies have been developed in order to reliably detect the surrounding environments of an autonomous vehicle. However, in real situations there is always the possibility that sensors or other components may fail. Thus, internal modules and sensors need to be monitored to ensure their proper function. This paper introduces a general view of a perception architecture designed to detect and classify obstacles in an autonomous vehicle's environment using a fault tolerant framework, whereas elaborates the object detection and local fusion modules proposed in order to achieve the modularity and real-time process required by the system.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2015). Sensor Fault Detection and Diagnosis for autonomous vehicles. In 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 (Vol. 30, pp. 1–6). EDP Sciences.
Abstract: In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2016). Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles. Journal of Automation and Control Engineering (JOACE), Vol. 4, pp. 430–436.
Abstract: Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2016). A Fault Tolerant Perception system for autonomous vehicles. In 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu (pp. 1–6).
Abstract: Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
|
|
|
Mildred Cruz, Cristhian A. Aguilera, Boris X. Vintimilla, Ricardo Toledo, & Ángel D. Sappa. (2015). Cross-spectral image registration and fusion: an evaluation study. In 2nd International Conference on Machine Vision and Machine Learning (Vol. 331). Barcelona, Spain: Computer Vision Center.
Abstract: This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
|
|