|
Henry Velesaca Lara, P. S., Darío Carpio & Angel Sappa. (2024). Fruit Grading based on Deep Learning and Active Vision System. In Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024) Guayaquil 28 – 30 May 2024 (Vol. Vol. 532).
|
|
|
Patricia Suarez & Angel D. Sappa. (2024). Haze-Free Imaging through Haze-Aware Transformer Adaptations. In In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024).
|
|
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla, Henry O. Velesaca. (2022). Human Body Pose Estimation in Multi-view Environments. In ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series (Vol. 224, pp. 79–99).
|
|
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla. (2022). Human Pose Estimation through A Novel Multi-View Scheme. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.
|
|
|
Angel D. Sappa. (2022). ICT Applications for Smart Cities. In Intelligent Systems Reference Library (Vol. 224).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2019). Image patch similarity through a meta-learning metric based approach. In 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia (pp. 511–517).
Abstract: Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2019). Image Vegetation Index through a Cycle Generative Adversarial Network. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States (pp. 1014–1021).
Abstract: This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided.
|
|
|
Dennys Paillacho, F. Novillo, W. Agila., & V. Huilcapi. (2015). Impacto de las redes de comunicaciones en los Sistemas Robóticos de Control. Revista Politécnica, Vol. 35, pp. 97–102.
Abstract: El análisis de incidencia que tienen las redes de comunicaciones sobre el comportamiento de los sistemas robóticos de control en red muestra grandes dificultades cuando se quieren hacer evaluaciones de tipo analítico. Por tal razón, en este trabajo un análisis que utiliza una aproximación basada en simulación es propuesto, de manera que el comportamiento temporal y espacial de un sistema robótico de control en red pueda ser evaluado. Para tal efecto, se propone un entorno de validación mediante el cual una red de comunicaciones permita distribuir mensajes de control entre el controlador principal y los controladores remotos ubicados en cada articulación angular del robot manipulador planar. Las interacciones entre los componentes del sistema han sido modeladas mediante un sistema de capas. Dicho modelo es llevado a un entorno de simulación con la finalidad de analizar el impacto de distintos parámetros de comunicaciones (i.e. tipo de red, tasa de datos y tamaño de datos) sobre el ciclo de comunicación y el error de seguimiento de trayectoria en un sistema robótico.
|
|
|
Velez R., P. A., Silva S., Paillacho D., and Paillacho J. (2022). Implementation of a UVC lights disinfection system for a diferential robot applying security methods in indoor. In Communications in Computer and Information Science, International Conference on Applied Technologies (ICAT 2021), octubre 27-29 (Vol. 1535, pp. 319–331).
|
|
|
Xavier Soria, & Angel D. Sappa. (2018). Improving Edge Detection in RGB Images by Adding NIR Channel. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 266–273).
|
|