|
Michael Teutsch, A. S. & R. H. (2021). Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision, Vol. 10 No. 2, pp. 138.
|
|
|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
|
|
Cristhian A. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2017). Cross-Spectral Local Descriptors via Quadruplet Network. In Sensors Journal, Vol. 17, pp. 873.
|
|
|
Henry Velesaca, B. V., Jorge Vulgarin, Coen Antens & Alberto Rubio Pérez. (2024). Deep Learning-based Multimodal Sensing Framework for AntiSpoofing Systems. In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024), .
|
|
|
Xavier Soria, A. S., Patricio Humanante, Arash Akbarinia. (2023). Dense extreme inception network for edge detection. Pattern Recognition, Vol. 139.
|
|
|
Ortiz J., Londono J., Novillo F., Ampuno A., & Chávez M. (2015). Determinación de Invariantes en Grandes Centros de Datos basados en Topología Fat-Tree. Revista Politécnica, Vol. 35, pp. 91–96.
Abstract: Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos ( DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.
|
|
|
Abel Rubio, W. A., Leandro González & Jonathan Aviles-Cedeno. (2023). Distributed Intelligence in Autonomous PEM Fuel Cell Control. Energies 2023, Vol. 16(Issue 12).
|
|
|
Santos, V., Sappa, A.D., Oliveira, M. & de la Escalera, A. (2021). Editorial: Special Issue on Autonomous Driving and Driver Assistance Systems – Some Main Trends. In Journal: Robotics and Autonomous Systems. (Article number 103832), Vol. 144.
|
|
|
Patricia L. Suarez, D. C., Angel D. Sappa. (2024). Enhancement of Guided Thermal Image Super-Resolution Approaches (Vol. 573).
|
|
|
Marta Diaz, Dennys Paillacho, & Cecilio Angulo. (2015). Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. International Journal of Humanoid Robotics, Vol. 12.
Abstract: This paper describes an exploratory study on group interaction with a robot-guide in an open large-scale busy environment. For an entire week a humanoid robot was deployed in the popular Cosmocaixa Science Museum in Barcelona and guided hundreds of people through the museum facilities. The main goal of this experience is to study in the wild the episodes of the robot guiding visitors to a requested destination focusing on the group behavior during displacement. The walking behavior follow-me and the face to face communication in a populated environment are analyzed in terms of guide- visitors interaction, grouping patterns and spatial formations. Results from observational data show that the space configurations spontaneously formed by the robot guide and visitors walking together did not always meet the robot communicative and navigational requirements for successful guidance. Therefore additional verbal and nonverbal prompts must be considered to regulate effectively the walking together and follow-me behaviors. Finally, we discuss lessons learned and recommendations for robot’s spatial behavior in dense crowded scenarios.
|
|