|
Charco, J. L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O. (2021). Camera pose estimation in multi-view environments:from virtual scenarios to the real world. In Image and Vision Computing Journal. (Article number 104182), Vol. 110.
Abstract: This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired
images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of
overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly
trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the
relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity
on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the
scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,
highlighting the importance on the similarity between virtual-real scenarios.
|
|
|
Velesaca, H. O., Suárez, P. L., Mira, R., & Sappa, A.D. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. In Computers and Electronics in Agriculture Journal. (Article number 106287), Vol. 187.
|
|
|
Michael Teutsch, A. S. & R. H. (2021). Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision, Vol. 10 No. 2, pp. 138.
|
|
|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
|
|
Cristhian A. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2017). Cross-Spectral Local Descriptors via Quadruplet Network. In Sensors Journal, Vol. 17, pp. 873.
|
|
|
Henry Velesaca, B. V., Jorge Vulgarin, Coen Antens & Alberto Rubio Pérez. (2024). Deep Learning-based Multimodal Sensing Framework for AntiSpoofing Systems. Lecture Notes in Networks and Systems: 4th International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024), Vol. 1116 LNNS, 39–54.
|
|
|
Xavier Soria, A. S., Patricio Humanante, Arash Akbarinia. (2023). Dense extreme inception network for edge detection. Pattern Recognition, Vol. 139.
|
|
|
Ortiz J., Londono J., Novillo F., Ampuno A., & Chávez M. (2015). Determinación de Invariantes en Grandes Centros de Datos basados en Topología Fat-Tree. Revista Politécnica, Vol. 35, pp. 91–96.
Abstract: Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos ( DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.
|
|
|
Abel Rubio, W. A., Leandro González & Jonathan Aviles-Cedeno. (2023). Distributed Intelligence in Autonomous PEM Fuel Cell Control. Energies 2023, Vol. 16(Issue 12).
|
|
|
Santos, V., Sappa, A.D., Oliveira, M. & de la Escalera, A. (2021). Editorial: Special Issue on Autonomous Driving and Driver Assistance Systems – Some Main Trends. In Journal: Robotics and Autonomous Systems. (Article number 103832), Vol. 144.
|
|