|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
|
|
Morocho-Cayamcela, M. E. & W. L. (2020). Lateral confinement of high-impedance surface-waves through reinforcement learning. Electronics Letters, Vol. 56(23, 12 November 2020), pp. 1262–1264.
Abstract: The authors present a model-free policy-based reinforcement learning
model that introduces perturbations on the pattern of a metasurface.
The objective is to learn a policy that changes the size of the
patches, and therefore the impedance in the sides of an artificially structured
material. The proposed iterative model assigns the highest reward
when the patch sizes allow the transmission along a constrained path
and penalties when the patch sizes make the surface wave radiate to
the sides of the metamaterial. After convergence, the proposed
model learns an optimal patch pattern that achieves lateral confinement
along the metasurface. Simulation results show that the proposed
learned-pattern can effectively guide the electromagnetic wave
through a metasurface, maintaining its instantaneous eigenstate when
the homogeneity is perturbed. Moreover, the pattern learned to
prevent reflections by changing the patch sizes adiabatically. The
reflection coefficient S1, 2 shows that most of the power gets transferred
from the source to the destination with the proposed design.
|
|
|
Cristhian A. Aguilera, Cristhian Aguilera, & Angel D. Sappa. (2018). Melamine faced panels defect classification beyond the visible spectrum. In Sensors 2018, Vol. 11(Issue 11).
Abstract: In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond
the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
|
|
|
Abel Rubio, W. A., Leandro González & Jonathan Aviles-Cedeno. (2023). Distributed Intelligence in Autonomous PEM Fuel Cell Control. Energies 2023, Vol. 16(Issue 12).
|
|
|
Morocho-Cayamcela, M. E. (2020). Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling. Electronic Letters on Computer Vision and Image Analysis (ELCVIA), Vol. 19(Issue 2), pp. 17–21.
|
|
|
Ulises Gildardo Quiroz Antúnez, A. I. M. R., María Fernanda Calderón Vega, Adán Guillermo Ramírez García. (2022). APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE. Granja, Vol. 36(Issue 2).
|
|
|
Rubio, G. A., Agila, W.E. (2021). A fuzzy model to manage water in polymer electrolyte membrane fuel cells. In Processes Journal. (Article number 904), Vol. 9(Issue 6).
Abstract: In this paper, a fuzzy model is presented to determine in real-time the degree of dehydration or flooding of a proton exchange membrane of a fuel cell, to optimize its electrical response and consequently, its autonomous operation. By applying load, current and flux variations in the dry, normal, and flooded states of the membrane, it was determined that the temporal evolution of the fuel cell voltage is characterized by changes in slope and by its voltage oscillations. The results were validated using electrochemical impedance spectroscopy and show slope changes from 0.435 to 0.52 and oscillations from 3.6 mV to 5.2 mV in the dry state, and slope changes from 0.2 to 0.3 and oscillations from 1 mV to 2 mV in the flooded state. The use of fuzzy logic is a novelty and constitutes a step towards the progressive automation of the supervision, perception, and intelligent control of fuel cells, allowing them to reduce their risks and increase their economic benefits.
|
|
|
Rafael E. Rivadeneira, A. D. S., Vintimilla B. X. and Hammoud R. (2022). A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Sensors, Vol. 22(Issue 6).
|
|
|
Xavier Soria, Angel D. Sappa, & Riad Hammoud. (2018). Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018 ,2059.Vol. 18(Issue 7).
Abstract: Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
|
|