|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
|
|
Pereira J., M. M. & W. A. (2021). Qualitative Model to Maximize Shrimp Growth at Low Cost. 5th Ecuador Technical Chapters Meeting (ETCM 2021), Octubre 12 – 15, .
|
|
|
Rafael E. Rivadeneira, A. D. S., Vintimilla B. X. and Hammoud R. (2022). A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Sensors, Vol. 22(Issue 6).
|
|
|
Rato D., O. M., Santos V., Sappa A. & Raducanu B. (2024). Multi-View 2D to 3D Lifting Video-Based Optimization: A Robust Approach for Human Pose Estimation with Occluded Joint Prediction. IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Abu Dhabi, October 14-18, 2024, .
|
|
|
Ricaurte P, Chilán C, Cristhian A. Aguilera, Boris X. Vintimilla, & Angel D. Sappa. (2014). Feature Point Descriptors: Infrared and Visible Spectra. Sensors Journal, Vol. 14, pp. 3690–3701.
Abstract: This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
|
|
|
Rosero Vasquez Shendry. (2020). Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020.615–625.
|
|
|
Rubio, G. A., Agila, W.E. (2021). A fuzzy model to manage water in polymer electrolyte membrane fuel cells. In Processes Journal. (Article number 904), Vol. 9(Issue 6).
Abstract: In this paper, a fuzzy model is presented to determine in real-time the degree of dehydration or flooding of a proton exchange membrane of a fuel cell, to optimize its electrical response and consequently, its autonomous operation. By applying load, current and flux variations in the dry, normal, and flooded states of the membrane, it was determined that the temporal evolution of the fuel cell voltage is characterized by changes in slope and by its voltage oscillations. The results were validated using electrochemical impedance spectroscopy and show slope changes from 0.435 to 0.52 and oscillations from 3.6 mV to 5.2 mV in the dry state, and slope changes from 0.2 to 0.3 and oscillations from 1 mV to 2 mV in the flooded state. The use of fuzzy logic is a novelty and constitutes a step towards the progressive automation of the supervision, perception, and intelligent control of fuel cells, allowing them to reduce their risks and increase their economic benefits.
|
|
|
Santos V., Angel D. Sappa., & Oliveira M. & de la Escalera A. (2019). Special Issue on Autonomous Driving and Driver Assistance Systems. In Robotics and Autonomous Systems, 121.
|
|
|
Santos, V., Sappa, A.D., Oliveira, M. & de la Escalera, A. (2021). Editorial: Special Issue on Autonomous Driving and Driver Assistance Systems – Some Main Trends. In Journal: Robotics and Autonomous Systems. (Article number 103832), Vol. 144.
|
|
|
Ulises Gildardo Quiroz Antúnez, A. I. M. R., María Fernanda Calderón Vega, Adán Guillermo Ramírez García. (2022). APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE. Granja, Vol. 36(Issue 2).
|
|