|
Cristhian A. Aguilera, C. A., Cristóbal A. Navarro, & Angel D. Sappa. (2020). Fast CNN Stereo Depth Estimation through Embedded GPU Devices. Sensors 2020, Vol. 2020-June(11), pp. 1–13.
Abstract: Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices.
|
|
|
Cristhian A. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2017). Cross-Spectral Local Descriptors via Quadruplet Network. In Sensors Journal, Vol. 17, pp. 873.
|
|
|
Cristhian A. Aguilera, Cristhian Aguilera, & Angel D. Sappa. (2018). Melamine faced panels defect classification beyond the visible spectrum. In Sensors 2018, Vol. 11(Issue 11).
Abstract: In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond
the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
|
|
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
|
|
Del Pino, J., Salazar, G., & Cedeño, V. M. (2011). Adaptación de un Recomendador de Filtro Colaborativo Basado en el Usuario para la Creación de un Recomendador de Materias de Pregrado Basado en el Historial Académico de los Estudiantes. Revista Tecnológica ESPOL, Vol. 24, pp. 29–34.
Abstract: Los sistemas de recomendación son ampliamente utilizados hoy en día gracias a su capacidad de analizar las preferencias de usuarios y sugerir ítems. No obstante, el uso de los recomendadores está limitado a un modelo basado en el usuario y no en su historial de preferencias, discriminando así el campo de aplicación, por ejemplo, a sistemas académicos donde sea primordial el estudio de las decisiones del estudiante a lo largo de su carrera. El presente
trabajo presenta un esfuerzo por adaptar filtros colaborativos basados en el usuario a filtros colaborativos basados en el historial del usuario. Con un conjunto de pruebas mediremos su efectividad utilizando dos algoritmos distintos de similaridad para recomendar materias a un estudiante en el sexto semestre de la carrera de Ingeniería en Electrónica y Telecomunicaciones ofertada por la FIEC – ESPOL. Los resultados muestran que es factible adaptar un recomendador a un modelo basado en el historial del usuario
|
|
|
Dennis G. Romero, A. F. N., & Teodiano Freire B. (2014). Reconocimiento en-línea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes. Revista Iberoamericana de Automática e Informática industrial 00 (2014), Vol. 11, pp. 202–211.
|
|
|
Dennys Paillacho, F. Novillo, W. Agila., & V. Huilcapi. (2015). Impacto de las redes de comunicaciones en los Sistemas Robóticos de Control. Revista Politécnica, Vol. 35, pp. 97–102.
Abstract: El análisis de incidencia que tienen las redes de comunicaciones sobre el comportamiento de los sistemas robóticos de control en red muestra grandes dificultades cuando se quieren hacer evaluaciones de tipo analítico. Por tal razón, en este trabajo un análisis que utiliza una aproximación basada en simulación es propuesto, de manera que el comportamiento temporal y espacial de un sistema robótico de control en red pueda ser evaluado. Para tal efecto, se propone un entorno de validación mediante el cual una red de comunicaciones permita distribuir mensajes de control entre el controlador principal y los controladores remotos ubicados en cada articulación angular del robot manipulador planar. Las interacciones entre los componentes del sistema han sido modeladas mediante un sistema de capas. Dicho modelo es llevado a un entorno de simulación con la finalidad de analizar el impacto de distintos parámetros de comunicaciones (i.e. tipo de red, tasa de datos y tamaño de datos) sobre el ciclo de comunicación y el error de seguimiento de trayectoria en un sistema robótico.
|
|
|
Gisel Bastidas G., P. M. V., Boris Vintimilla & Angel D. Sappa. (2025). Application-Guided Image Fusion: A Path to Improve Results in High-Level Vision Tasks. 20th International Conference on Computer Vision Theory and Applications VISAPP 2025, .
|
|
|
Henry O. Velesaca & Angel D. Sappa. (2025). Seeing the Unseen: AI-Powered Camouflaged Pest Detection. 9th International Conference on Machine Vision and Information Technology (CMVIT 2025), .
|
|
|
Henry O. Velesaca, A. D. S. & J. A. H. (2025). A Case Study of Anomaly Detection in Tinplate Lids: Supervised vs Unsupervised approaches. 11th International Conference on Automation, Robotics, and Applications (ICARA 2025), .
|
|