Home | << 1 2 >> |
Records | |||||
---|---|---|---|---|---|
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Image Vegetation Index through a Cycle Generative Adversarial Network | Type | Conference Article | ||
Year | 2019 | Publication | Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States | Abbreviated Journal | |
Volume | Issue | Pages | 1014-1021 | ||
Keywords | |||||
Abstract | This paper proposes a novel approach to estimate the Normalized Difference Vegetation Index (NDVI) just from an RGB image. The NDVI values are obtained by using images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The cycled GAN network is able to obtain a NIR image from a given gray scale image. It is trained by using unpaired set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are obtained from the provided RGB images). Then, the NIR image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous approaches are also provided. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 106 | ||
Permanent link to this record | |||||
Author | Armin Mehri; Angel D. Sappa | ||||
Title | Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples | Type | Conference Article | ||
Year | 2019 | Publication | Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States | Abbreviated Journal | |
Volume | Issue | Pages | 971-979 | ||
Keywords | |||||
Abstract | This paper presents a novel approach for colorizing near infrared (NIR) images. The approach is based on image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored networks that require less computation times, converge faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation metrics—and qualitatively evaluated showing considerable improvements with respect to the state of the art |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 105 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Jonathan S. Paillacho Corredores; Joe Saverio & Allan Alarcon | ||||
Title | Open Source system for identification of corn leaf chlorophyll contents based on multispectral images | Type | Conference Article | ||
Year | 2019 | Publication | International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 572-581 | ||
Keywords | |||||
Abstract | It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images. Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%. It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests. However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1]. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 116 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Image patch similarity through a meta-learning metric based approach | Type | Conference Article | ||
Year | 2019 | Publication | 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia | Abbreviated Journal | |
Volume | Issue | Pages | 511-517 | ||
Keywords | |||||
Abstract | Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 115 | ||
Permanent link to this record | |||||
Author | Wilton Agila; Gomer Rubio; Francisco Vidal; B. Lima | ||||
Title | Real time Qualitative Model for estimate Water content in PEM Fuel Cell | Type | Conference Article | ||
Year | 2019 | Publication | 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania | Abbreviated Journal | |
Volume | Issue | Pages | 455-459 | ||
Keywords | |||||
Abstract | To maintain optimum performance of the electrical response of a fuel cell, a real time identification of the malfunction situations is required. Critical fuel cell states depend, among others, on the variable demand of electric load and are directly related to the membrane hydration level. The real time perception of relevant states in the PEM fuel cell states space, is still a challenge for the PEM fuel cell control systems. Current work presents the design and implementation of a methodology based upon fuzzy decision techniques that allows real time characterization of the dehydration and flooding states of a PEM fuel cell. Real time state estimation is accomplished through a perturbation-perception process on the PEM fuel cell and further on voltage oscillation analysis. The real time implementation of the perturbation-perception algorithm to detect PEM fuel cell critical states is a novelty and a step forwards the control of the PEM fuel cell to reach and maintain optimal performance. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 109 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. | ||||
Title | Thermal Image SuperResolution through Deep Convolutional Neural Network. | Type | Conference Article | ||
Year | 2019 | Publication | 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá | Abbreviated Journal | |
Volume | Issue | Pages | 417-426 | ||
Keywords | |||||
Abstract | Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 103 | ||
Permanent link to this record | |||||
Author | G.A. Rubio; Wilton Agila | ||||
Title | Transients analysis in Proton Exchange Membrane Fuel Cells: A critical review | Type | Conference Article | ||
Year | 2019 | Publication | 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania | Abbreviated Journal | |
Volume | Issue | Pages | 249-252 | ||
Keywords | |||||
Abstract | When a proton exchange fuel cell operates it produces in addition to electrical energy, heat and water as sub products, which impact on the performance of the cell. This paper analyzes the issue of transients and proposes a model that describes the dynamic operation of the fuel cell. The model considers the transients produced by electrochemical reactions, by flow water and by heat transfer. Two-phase flow transients result in increased the parasitic power losses and thermal transients may result in flooding or dryout of the GDL and membrane, understanding transient behavior is critical for reliable and predictable performance from the cell. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 111 | ||
Permanent link to this record | |||||
Author | Roberto Jacome Galarza; Miguel-Andrés Realpe-Robalino; Chamba-Eras LuisAntonio; Viñán-Ludeña MarlonSantiago and Sinche-Freire Javier-Francisco | ||||
Title | Computer vision for image understanding. A comprehensive review | Type | Conference Article | ||
Year | 2019 | Publication | International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019); Quito, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 248-259 | ||
Keywords | |||||
Abstract | Computer Vision has its own Turing test: Can a machine describe the contents of an image or a video in the way a human being would do? In this paper, the progress of Deep Learning for image recognition is analyzed in order to know the answer to this question. In recent years, Deep Learning has increased considerably the precision rate of many tasks related to computer vision. Many datasets of labeled images are now available online, which leads to pre-trained models for many computer vision applications. In this work, we gather information of the latest techniques to perform image understanding and description. As a conclusion we obtained that the combination of Natural Language Processing (using Recurrent Neural Networks and Long Short-Term Memory) plus Image Understanding (using Convolutional Neural Networks) could bring new types of powerful and useful applications in which the computer will be able to answer questions about the content of images and videos. In order to build datasets of labeled images, we need a lot of work and most of the datasets are built using crowd work. These new applications have the potential to increase the human machine interaction to new levels of usability and user’s satisfaction. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 97 | ||
Permanent link to this record | |||||
Author | Angel Morera; Angel Sánchez; Angel D. Sappa; José F. Vélez | ||||
Title | Robust Detection of Outdoor Urban Advertising Panels in Static Images. | Type | Conference Article | ||
Year | 2019 | Publication | 17th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2019); Ávila, España. Communications in Computer and Information Science | Abbreviated Journal | |
Volume | 1047 | Issue | Pages | 246-256 | |
Keywords | |||||
Abstract | One interesting publicity application for Smart City environments is recognizing brand information contained in urban advertising panels. For such a purpose, a previous stage is to accurately detect and locate the position of these panels in images. This work presents an effective solution to this problem using a Single Shot Detector (SSD) based on a deep neural network architecture that minimizes the number of false detections under multiple variable conditions regarding the panels and the scene. Achieved experimental results using the Intersection over Union (IoU) accuracy metric make this proposal applicable in real complex urban images. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 107 | ||
Permanent link to this record | |||||
Author | G.A. Rubio; Wilton Agila | ||||
Title | Sustainable Energy: A Strategic View of Fuel Cells | Type | Conference Article | ||
Year | 2019 | Publication | 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania | Abbreviated Journal | |
Volume | Issue | Pages | 239-243 | ||
Keywords | |||||
Abstract | Based on the model of the proton exchange fuel cell in a strategic context, this document develops the issue of energy as one of the pillars to achieve the sustainability of our planet, considering the future scenarios up to the year 2060 of the situation energy, hydrogen as a strategic vector and the contribution of the fuel cell in solving the serious problems of environmental pollution and economic inequity that humanity faces; for its application in the energy generation, telecommunications and vehicle manufacturing industries. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 110 | ||
Permanent link to this record |