|
Records |
Links |
|
Author |
Roberto Jacome Galarza; Miguel-Andrés Realpe-Robalino; Chamba-Eras LuisAntonio; Viñán-Ludeña MarlonSantiago and Sinche-Freire Javier-Francisco |
|
|
Title |
Computer vision for image understanding. A comprehensive review |
Type |
Conference Article |
|
Year |
2019 |
Publication |
International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019); Quito, Ecuador |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
248-259 |
|
|
Keywords |
|
|
|
Abstract |
Computer Vision has its own Turing test: Can a machine describe the contents of an image or a video in the way a human being would do? In this paper, the progress of Deep Learning for image recognition is analyzed in order to know the answer to this question. In recent years, Deep Learning has increased considerably the precision rate of many tasks related to computer vision. Many datasets of labeled images are now available online, which leads to pre-trained models for many computer vision applications. In this work, we gather information of the latest techniques to perform image understanding and description. As a conclusion we obtained that the combination of Natural Language Processing (using Recurrent Neural Networks and Long Short-Term Memory) plus Image Understanding (using Convolutional Neural Networks) could bring new types of powerful and useful applications in which the computer will be able to answer questions about the content of images and videos. In order to build datasets of labeled images, we need a lot of work and most of the datasets are built using crowd work. These new applications have the potential to increase the human machine interaction to new levels of usability and user’s satisfaction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
97 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Colorizing Infrared Images through a Triplet Condictional DCGAN Architecture |
Type |
Conference Article |
|
Year |
2017 |
Publication |
19th International Conference on Image Analysis and Processing. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
287-297 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
66 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Learning Image Vegetation Index through a Conditional Generative Adversarial Network |
Type |
Conference Article |
|
Year |
2017 |
Publication |
2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
70 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Soria; Angel D. Sappa; Arash Akbarinia |
|
|
Title |
Multispectral Single-Sensor RGB-NIR Imaging: New Challenges an Oppotunities |
Type |
Conference Article |
|
Year |
2017 |
Publication |
The 7th International Conference on Image Processing Theory, Tools and Application |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-6 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
72 |
|
Permanent link to this record |
|
|
|
|
Author |
Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero |
|
|
Title |
Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. |
Type |
Conference Article |
|
Year |
2018 |
Publication |
IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-6 |
|
|
Keywords |
|
|
|
Abstract |
The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-
Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
87 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Deep Learning based Single Image Dehazing |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network (GAN). It employs a triplet
of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a
conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned
entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast
model training convergence and a homogeneous model generalization.
Experiments showed that the proposed method
generates high-quality clear images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
83 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Near InfraRed Imagery Colorization |
Type |
Conference Article |
|
Year |
2018 |
Publication |
25 th IEEE International Conference on Image Processing, ICIP 2018 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2237-2241 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
81 |
|
Permanent link to this record |
|
|
|
|
Author |
Wilton Agila; Gomer Rubio; L. Miranda; L. Vázquez |
|
|
Title |
Qualitative Model of Control in the Pressure Stabilization of PEM Fuel Cell |
Type |
Conference Article |
|
Year |
2018 |
Publication |
7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1221-1226 |
|
|
Keywords |
|
|
|
Abstract |
This work describes an approximate reasoning
technique to deal with the non-linearity that occurs in the
stabilization of the pressure of anodic and cathodic gases of a
proton exchange membrane fuel cell (PEM). The implementation
of a supervisory element in the stabilization of the pressure of the
PEM cell is described. The fuzzy supervisor is a reference
control, it varies the value of the reference given to the classic
low-level controller, Proportional – Integral – Derivative (PID),
according to the speed of change of the measured pressure and
the change in the error of the pressure. The objective of the fuzzy
supervisor is to achieve a rapid response over time of the variable
pressure, avoiding unwanted overruns with respect to the
reference value. A comparative analysis is detailed with the
classic PID control to evaluate the operation of the “fuzzy
supervisor”, with different flow values and different sizes of
active area of the PEM cell (electric power generated). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
88 |
|
Permanent link to this record |
|
|
|
|
Author |
Gomer Rubio; Wilton Agila |
|
|
Title |
Dynamic Modeling of Fuel Cells in a Strategic Context |
Type |
Conference Article |
|
Year |
2018 |
Publication |
7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
86 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlos Monsalve; Alain April; Alain Abran |
|
|
Title |
BPM and requirements elicitation at multiple levels of abstraction: A review |
Type |
Conference Article |
|
Year |
2011 |
Publication |
IADIS International Conference on Information Systems 2011 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
237-242 |
|
|
Keywords |
Business process modeling, levels of abstraction, requirements elicitation, requirements modeling, review |
|
|
Abstract |
Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs.
Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs
and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches. |
|
|
Address |
CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL) Km. 30.5 vía Perimetral, |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
15 |
|
Permanent link to this record |