Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Records | |||||
---|---|---|---|---|---|
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Chenyang Wang, Junjun Jiang, Xianming Liu, Zhiwei Zhong, Dai Bin, Li Ruodi, Li Shengye | ||||
Title | Thermal Image Super-Resolution Challenge Results – PBVS 2023 | Type | Conference Article | ||
Year | 2023 | Publication | 19th IEEE Workshop on Perception Beyond the Visible Spectrum de la Conferencia Computer Vision & Pattern Recognition (CVPR 2023) Vancouver, 18-28 junio 2023 | Abbreviated Journal | |
Volume | 2023-June | Issue | Pages | 470 - 478 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 979-835030249-3 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 210 | ||
Permanent link to this record | |||||
Author | Spencer Low, Oliver Nina, Angel D. Sappa, Erik Blasch, Nathan Inkawhich | ||||
Title | Multi-modal Aerial View Object Classification Challenge Results – PBVS 2023 | Type | Conference Article | ||
Year | 2023 | Publication | 19th IEEE Workshop on Perception Beyond the Visible Spectrum de la Conferencia Computer Vision & Pattern Recognition (CVPR 2023) Vancouver, 18-28 junio 2023 | Abbreviated Journal | |
Volume | 2023-June | Issue | Pages | 412 - 421 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 979-835030249-3 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 212 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. | ||||
Title | Thermal Image Super-Resolution Challenge Results- PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 349-357 | |
Keywords | |||||
Abstract | This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept aside for testing. The evaluation tasks were to measure the PSNR and SSIM between the SR image and the ground truth (HR thermal noisy image downsampled by four), and also to measure the PSNR and SSIM between the SR image and the semi-registered HR image (acquired with another camera). The results outperformed those from last year’s challenge, improving both evaluation metrics. This year, almost 100 teams participants registered for the challenge, showing the community’s interest in this hot topic. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 175 | ||
Permanent link to this record | |||||
Author | Rangnekar,Aneesha; Mulhollan,Zachary; Vodacek,Anthony; Hoffman,Matthew; Sappa,Angel D.; Yu,Jun et al. | ||||
Title | Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 389-397 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 176 | ||
Permanent link to this record | |||||
Author | Low S., Inkawhich N., Nina O., Sappa A. and Blasch E. | ||||
Title | Multi-modal Aerial View Object Classification Challenge Results-PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 417-425 | |
Keywords | |||||
Abstract | This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. This year’s MAVOC challenge is the second iteration. The primary goal of both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) input modalities. Teams are encouraged/challenged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge showed a proof of concept that both modalities could be used together, the 2022 challenge focuses on the detailed multi-modal models. Using the same UNIfied COincident Optical and Radar for recognitioN (UNICORN) dataset and competition format that was used in 2021. Specifically, the challenge focuses on two techniques, (1) SAR classification and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods and describing their performance on our blind test set. Notably, all of the top ten teams outperform our baseline. For SAR classification, the top team showed a 129% improvement over our baseline and an 8% average improvement from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average improvement over 2021. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 177 | ||
Permanent link to this record | |||||
Author | Silva Steven, Paillacho Dennys, Verdezoto Nervo, Hernandez Juan David | ||||
Title | TOWARDS ONLINE SOCIALLY ACCEPTABLE ROBOT NAVIGATION | Type | Conference Article | ||
Year | 2022 | Publication | IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, | Abbreviated Journal | |
Volume | 2022-August | Issue | Pages | 707-714 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 199 | ||
Permanent link to this record | |||||
Author | Benítez-Quintero J., Quevedo-Pinos O., Calderon, Fernanda | ||||
Title | Notes on Sulfur Fluxes in Urban Areas with Industrial Activity | Type | Conference Article | ||
Year | 2022 | Publication | 20th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology, LACCEI 2022, | Abbreviated Journal | |
Volume | 2022-July | Issue | Pages | ||
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 201 | ||
Permanent link to this record | |||||
Author | Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Cycle generative adversarial network: towards a low-cost vegetation index estimation | Type | Conference Article | ||
Year | 2021 | Publication | IEEE International Conference on Image Processing (ICIP 2021) | Abbreviated Journal | |
Volume | 2021-September | Issue | Pages | 2783-2787 | |
Keywords | CyclicGAN, NDVI, near infrared spectra, instance normalization. | ||||
Abstract | This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 164 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi | ||||
Title | Thermal Image Super-Resolution Challenge – PBVS 2020 | Type | Conference Article | ||
Year | 2020 | Publication | The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) | Abbreviated Journal | |
Volume | 2020-June | Issue | 9151059 | Pages | 432-439 |
Keywords | |||||
Abstract | This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 978-172819360-1 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 123 | ||
Permanent link to this record | |||||
Author | Henry O. Velesaca; Raul A. Mira; Patricia L. Suarez; Christian X. Larrea; Angel D. Sappa. | ||||
Title | Deep Learning based Corn Kernel Classification. | Type | Conference Article | ||
Year | 2020 | Publication | The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) | Abbreviated Journal | |
Volume | 2020-June | Issue | 9150684 | Pages | 294-302 |
Keywords | |||||
Abstract | This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered. As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 978-172819360-1 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 124 | ||
Permanent link to this record |