|   | 
Details
   web
Records
Author Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al.
Title Thermal Image Super-Resolution Challenge Results- PBVS 2022. Type Conference Article
Year 2022 Publication Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE
Volume 2022-June Issue Pages 349-357
Keywords
Abstract This paper presents results from the third Thermal Image

Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.

The challenge uses the same thermal image dataset as the

first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was

kept aside for testing. The evaluation tasks were to measure

the PSNR and SSIM between the SR image and the ground

truth (HR thermal noisy image downsampled by four), and

also to measure the PSNR and SSIM between the SR image

and the semi-registered HR image (acquired with another

camera). The results outperformed those from last year’s

challenge, improving both evaluation metrics. This year,

almost 100 teams participants registered for the challenge,

showing the community’s interest in this hot topic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 175
Permanent link to this record
 

 
Author Low S., Inkawhich N., Nina O., Sappa A. and Blasch E.
Title Multi-modal Aerial View Object Classification Challenge Results-PBVS 2022. Type Conference Article
Year 2022 Publication Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE
Volume 2022-June Issue Pages 417-425
Keywords
Abstract This paper details the results and main findings of the

second iteration of the Multi-modal Aerial View Object

Classification (MAVOC) challenge. This year’s MAVOC

challenge is the second iteration. The primary goal of

both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) input

modalities. Teams are encouraged/challenged to develop

multi-modal approaches that incorporate complementary

information from both domains. While the 2021 challenge

showed a proof of concept that both modalities could be

used together, the 2022 challenge focuses on the detailed

multi-modal models. Using the same UNIfied COincident

Optical and Radar for recognitioN (UNICORN) dataset and

competition format that was used in 2021. Specifically, the

challenge focuses on two techniques, (1) SAR classification

and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods

and describing their performance on our blind test set. Notably, all of the top ten teams outperform our baseline. For

SAR classification, the top team showed a 129% improvement over our baseline and an 8% average improvement

from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average

improvement over 2021.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 177
Permanent link to this record
 

 
Author Angel D. Sappa; Cristhian A. Aguilera; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo
Title Monocular visual odometry: a cross-spectral image fusion based approach Type Journal Article
Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal
Volume Vol. 86 Issue Pages pp. 26-36
Keywords Monocular visual odometry LWIR-RGB cross-spectral imaging Image fusion
Abstract This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is em- pirically obtained by means of a mutual information based evaluation met- ric. The objective is to have a exible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odom- etry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Enlgish Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 54
Permanent link to this record
 

 
Author Nayeth I. Solorzano, L. C. H., Leslie del R. Lima, Dennys F. Paillacho & Jonathan S. Paillacho
Title Visual Metrics for Educational Videogames Linked to Socially Assistive Robots in an Inclusive Education Framework Type Conference Article
Year 2022 Publication Smart Innovation, Systems and Technologies. International Conference in Information Technology & Education (ICITED 21), julio 15-17 Abbreviated Journal
Volume 256 Issue Pages 119-132
Keywords
Abstract In gamification, the development of “visual metrics for educational

video games linked to social assistance robots in the framework of inclusive education” seeks to provide support, not only to regular children but also to children with specific psychosocial disabilities, such as those diagnosed with autism spectrum disorder (ASD). However, personalizing each child's experiences represents a limitation, especially for those with atypical behaviors. 'LOLY,' a social assistance robot, works together with mobile applications associated with the family of educational video game series called 'MIDI-AM,' forming a social robotic platform. This platform offers the user curricular digital content to reinforce the teaching-learning processes and motivate regular children and those with ASD. In the present study, technical, programmatic experiments and focus groups were carried out, using open-source facial recognition algorithms to monitor and evaluate the degree of user attention throughout the interaction. The objective is to evaluate the management of a social robot linked to educational video games

through established metrics, which allow monitoring the user's facial expressions

during its use and define a scenario that ensures consistency in the results for its applicability in therapies and reinforcement in the teaching process, mainly

adaptable for inclusive early childhood education.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 180
Permanent link to this record
 

 
Author Jacome-Galarza L.-R., Realpe Robalino M.-A., Paillacho Corredores J., Benavides Maldonado J.-L.
Title Time series in sensor data using state of the art deep learning approaches: A systematic literature review. Type Conference Article
Year 2022 Publication VII International Conference on Science, Technology and Innovation for Society (CITIS 2021), mayo 26-28.  Smart Innovation, Systems and Technologies. Abbreviated Journal
Volume Vol. 252 Issue Pages 503-514
Keywords time series, deep learning, recurrent networks, sensor data, IoT.
Abstract IoT (Internet of Things) and AI (Artificial Intelligence) are becoming

support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time series data we have: LSTM (Long Short-Term Memory) for its high precision in prediction and the ability to automatically process input sequences; CNN (Convolutional Neural Networks) mainly in human activity

recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and RNN (Recurrent Neural Networks) for data fusion from different sensors and their subsequent classification; and stacked LSTM Autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing.Finally, well-known technologies in natural language processing are also used in time series data prediction, such as the attention mechanism and embeddings obtaining promising results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 152
Permanent link to this record
 

 
Author Viñán-Ludeña M.S., De Campos L.M., Roberto Jacome Galarza, & Sinche Freire, J.
Title Social media influence: a comprehensive review in general and in tourism domain Type Journal Article
Year 2020 Publication Smart Innovation, Systems and Technologies. Abbreviated Journal
Volume 171, 2020 Issue Pages 25-35
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 190
Permanent link to this record
 

 
Author Emmanuel F. Morán, Boris X. Vintimilla, Miguel A. Realpe
Title Towards a Robust Solution for the Supermarket Shelf Audit Problem: Obsolete Price Tags in Shelves Type Conference Article
Year 2024 Publication Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 26th Iberoamerican Congress on Pattern Recognition, CIARP 2023 Coimbra 27 – 30 November 2023 Abbreviated Journal
Volume Vol. 14470 Issue Pages 257–271
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 03029743 ISBN 978-303149017-0 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 249
Permanent link to this record
 

 
Author Patricia Suarez, Henry Velesaca, Dario Carpio, Angel Sappa, Patricia Urdiales, Francisca Burgos
Title Deep Learning based Shrimp Classification Type Conference Article
Year 2022 Publication 17th International Symposium on Visual Computing, San Diego, USA, Octubre 3-5. Lecture Notes in Computer Science (LNCS) Abbreviated Journal
Volume 13598 LNCS Issue Pages 36-45
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 194
Permanent link to this record
 

 
Author Roberto Jacome Galarza.
Title Multimodal deep learning for crop yield prediction. Type Conference Article
Year 2022 Publication Doctoral Symposium on Information and Communication Technologies –DSICT 2022. Octubre 12-14. Abbreviated Journal
Volume 1647 Issue Communicationsin Computer and Infor Pages 106-117
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 193
Permanent link to this record
 

 
Author Henry O. Velesaca, Patricia L. Suárez, Dario Carpio, Rafael E. Rivadeneira, Ángel Sánchez, Angel D. Sappa.
Title Video Analytics in Urban Environments: Challenges and Approaches. Type Book Chapter
Year 2022 Publication ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series Abbreviated Journal BOOK
Volume 224 Issue Pages 101-122
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 196
Permanent link to this record