|   | 
Details
   web
Records
Author Jacome-Galarza L.-R., Realpe Robalino M.-A., Paillacho Corredores J., Benavides Maldonado J.-L.
Title Time series in sensor data using state of the art deep learning approaches: A systematic literature review. Type (up) Conference Article
Year 2022 Publication VII International Conference on Science, Technology and Innovation for Society (CITIS 2021), mayo 26-28.  Smart Innovation, Systems and Technologies. Abbreviated Journal
Volume Vol. 252 Issue Pages 503-514
Keywords time series, deep learning, recurrent networks, sensor data, IoT.
Abstract IoT (Internet of Things) and AI (Artificial Intelligence) are becoming

support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time series data we have: LSTM (Long Short-Term Memory) for its high precision in prediction and the ability to automatically process input sequences; CNN (Convolutional Neural Networks) mainly in human activity

recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and RNN (Recurrent Neural Networks) for data fusion from different sensors and their subsequent classification; and stacked LSTM Autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing.Finally, well-known technologies in natural language processing are also used in time series data prediction, such as the attention mechanism and embeddings obtaining promising results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 152
Permanent link to this record
 

 
Author Luis Jacome-Galarza, Monica Villavicencio-Cabezas, Miguel Realpe-Robalino, Jose Benavides-Maldonado
Title Software Engineering and Distributed Computing in image processing intelligent systems: a systematic literature review. Type (up) Conference Article
Year 2021 Publication 19th LACCEI International Multi-Conference for Engineering, Education, and Technology Abbreviated Journal
Volume Issue Pages
Keywords processing, software engineering, deep learning, intelligent vision systems, cloud computing.
Abstract Deep learning is experiencing an upward technology trend that is revolutionizing intelligent systems in several domains, such as image and speech recognition, machine translation, social network filtering, and the like. By reviewing a total of 80 studies reported from 2016 to 2020, the present article evaluates the application of software engineering to the field

of intelligent image processing systems, it also offers insights about aspects related to distributed computing for this type of systems. Results indicate that several topics of software engineering are mostly applied when academics are involved in developing projects associated to this kind of intelligent systems. The findings provide evidences that Apache Spark is the most

utilized distributed computing framework for image processing. In addition, Tensorflow is a popular framework used to build convolutional neural networks, which are the prevailing deep learning algorithms used in intelligent image processing systems.

Also, among big cloud providers, Amazon Web Services is the preferred computing platform across the industry sectors, followed by Google cloud.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 154
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla
Title Cycle generative adversarial network: towards a low-cost vegetation index estimation Type (up) Conference Article
Year 2021 Publication IEEE International Conference on Image Processing (ICIP 2021) Abbreviated Journal
Volume 2021-September Issue Pages 2783-2787
Keywords CyclicGAN, NDVI, near infrared spectra, instance normalization.
Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 164
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel D. Sappa and Boris X. Vintimilla
Title Multi-Image Super-Resolution for Thermal Images. Type (up) Conference Article
Year 2022 Publication Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 Abbreviated Journal
Volume 4 Issue Pages 635 - 642
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 181
Permanent link to this record
 

 
Author Angel D. Sappa, Patricia L. Suárez, Henry O. Velesaca, Darío Carpio
Title Domain adaptation in image dehazing: exploring the usage of images from virtual scenarios. Type (up) Conference Article
Year 2022 Publication 16th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP 2022), julio 20-22 Abbreviated Journal
Volume Issue Pages 85-92
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 182
Permanent link to this record
 

 
Author Henry O. Velesaca, Patricia L. Suarez, Dario Carpio, and Angel D. Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type (up) Conference Article
Year 2021 Publication 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science Abbreviated Journal
Volume 13017 Issue Pages 131-143
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 163
Permanent link to this record
 

 
Author Patricia L. Suárez, Dario Carpio, and Angel Sappa
Title Non-Homogeneous Haze Removal through a Multiple Attention Module Architecture. Type (up) Conference Article
Year 2021 Publication 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science Abbreviated Journal
Volume 13018 Issue Pages 178-190
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 162
Permanent link to this record
 

 
Author Velesaca, Henry O.; Suárez, Patricia L.; Sappa, Angel D.; Carpio, Dario; Rivadeneira, Rafael E.; Sanchez, Angel
Title Review on Common Techniques for Urban Environment Video Analytics. Type (up) Conference Article
Year 2022 Publication WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI 2022) Abbreviated Journal
Volume Issue Porto Alegre: Sociedade Brasileira de Computação Pages 107-118
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number cidis @ cidis @ Serial 192
Permanent link to this record
 

 
Author Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla
Title Human Pose Estimation through A Novel Multi-View Scheme Type (up) Conference Article
Year 2022 Publication Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 Abbreviated Journal
Volume 5 Issue Pages 855-862
Keywords Multi-View Scheme, Human Pose Estimation, Relative Camera Pose, Monocular Approach
Abstract This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human

pose estimation problem. The proposed approach first obtains the human body joints of a set of images,

which are captured from different views at the same time. Then, it enhances the obtained joints by using a

multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from

another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed

for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and

comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements

in the accuracy of body joints estimations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number cidis @ cidis @ Serial 169
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al.
Title Thermal Image Super-Resolution Challenge Results- PBVS 2022. Type (up) Conference Article
Year 2022 Publication Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE
Volume 2022-June Issue Pages 349-357
Keywords
Abstract This paper presents results from the third Thermal Image

Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.

The challenge uses the same thermal image dataset as the

first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was

kept aside for testing. The evaluation tasks were to measure

the PSNR and SSIM between the SR image and the ground

truth (HR thermal noisy image downsampled by four), and

also to measure the PSNR and SSIM between the SR image

and the semi-registered HR image (acquired with another

camera). The results outperformed those from last year’s

challenge, improving both evaluation metrics. This year,

almost 100 teams participants registered for the challenge,

showing the community’s interest in this hot topic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 175
Permanent link to this record