toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dennys Paillacho Chiluiza & Steven Silva Mendoza openurl 
  Title (up) Exploring the Perceptions and Challenges of Social Robot Navigation: Two Case Studies in Different Socio-Technical Contexts Type Conference Article
  Year 2024 Publication Accepted in 36th Australian Conference on Human-Computer Interaction Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 252  
Permanent link to this record
 

 
Author Rosero Vasquez Shendry url  openurl
  Title (up) Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020. Type Journal Article
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 615-625  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 145  
Permanent link to this record
 

 
Author Mónica Villavicencio; Alain Abran pdf  url
openurl 
  Title (up) Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results Type Journal Article
  Year 2011 Publication Journal of Software Engineering and Application Abbreviated Journal  
  Volume Issue Pages pp. 227-234  
  Keywords Software measurement, education, software engineering  
  Abstract How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented.  
  Address 2 CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 17  
Permanent link to this record
 

 
Author Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa pdf  openurl
  Title (up) Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
  Year 2020 Publication Sensors 2020 Abbreviated Journal  
  Volume Vol. 2020-June Issue 11 Pages pp. 1-13  
  Keywords stereo matching; deep learning; embedded GPU  
  Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14248220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 132  
Permanent link to this record
 

 
Author Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa pdf  url
openurl 
  Title (up) Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
  Year 2014 Publication Sensors Journal Abbreviated Journal  
  Volume Vol. 14 Issue Pages pp. 3690-3701  
  Keywords cross-spectral imaging; feature point descriptors  
  Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 28  
Permanent link to this record
 

 
Author Juan A. Carvajal; Dennis G. Romero; Angel D. Sappa pdf  openurl
  Title (up) Fine-tuning based deep covolutional networks for lepidopterous genus recognition Type Conference Article
  Year 2016 Publication XXI IberoAmerican Congress on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords  
  Abstract This paper describes an image classi cation approach ori- ented to identify specimens of lepidopterous insects recognized at Ecuado- rian ecological reserves. This work seeks to contribute to studies in the area of biology about genus of butter ies and also to facilitate the reg- istration of unrecognized specimens. The proposed approach is based on the ne-tuning of three widely used pre-trained Convolutional Neural Networks (CNNs). This strategy is intended to overcome the reduced number of labeled images. Experimental results with a dataset labeled by expert biologists, is presented|a recognition accuracy above 92% is reached. 1 Introductio  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 53  
Permanent link to this record
 

 
Author Juan A. Carvajal; Dennis G. Romero; Angel D. Sappa pdf  openurl
  Title (up) Fine-tuning deep convolutional networks for lepidopterous genus recognition Type Journal Article
  Year 2017 Publication Lecture Notes in Computer Science Abbreviated Journal  
  Volume Vol. 10125 LNCS Issue Pages pp. 467-475  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 63  
Permanent link to this record
 

 
Author Sebastián Fuenzalida; Keyla Toapanta; Jonathan S. Paillacho Corredores; Dennys Paillacho pdf  openurl
  Title (up) Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,

called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric

relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 113  
Permanent link to this record
 

 
Author Luis Chuquimarca, Renzo Pacheco, Paula Gonzalez, Boris Vintimilla & Sergio Velastin pdf  openurl
  Title (up) Fruit defect detection using CNN models with real and virtual data. Type Conference Article
  Year 2023 Publication Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) Lisbon, 19-21 Febrero 2023 Abbreviated Journal  
  Volume Issue Pages 272 - 279  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 203  
Permanent link to this record
 

 
Author Tommy David Beltran Borbor, Raul Josue Villao Rodriguez, Luis Enrique Chuquimarca Jiménez, Boris Xavier Vintimilla Burgos & Sergio Alejandro Velastin openurl 
  Title (up) Fruit Deformity Classification through Single-Input and Multi-Input Architectures based on CNN Models using Real and Synthetic Images Type Conference Article
  Year 2024 Publication Accepted in 27th The Iberomican Congress on Pattern Recognition CIARP 2024 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: