|   | 
Details
   web
Records
Author Michael Teutsch, Angel Sappa & Riad Hammoud
Title (up) Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches Type Journal Article
Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal
Volume Vol. 10 No. 2 Issue Pages pp. 138
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 166
Permanent link to this record
 

 
Author M. Oliveira; L. Seabra Lopes; G. Hyun Lim; S. Hamidreza Kasaei; Angel D. Sappa; A. Tomé
Title (up) Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains Type Conference Article
Year 2015 Publication Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 Abbreviated Journal
Volume Issue Pages 2488 - 2495
Keywords Birds, Training, Legged locomotion, Visualization, Histograms, Object recognition, Gaussian mixture model
Abstract In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Hamburg, Germany Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Notes Approved no
Call Number cidis @ cidis @ Serial 41
Permanent link to this record
 

 
Author Patricia Súarez, Henry Velesaca, Dario Carpio & Angel Sappa
Title (up) Corn Kernel Classification From Few Training Samples Type Journal Article
Year 2023 Publication In journal Artificial Intelligence in Agriculture Abbreviated Journal
Volume Vol. 9 Issue Pages pp. 89-99
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 25897217 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 223
Permanent link to this record
 

 
Author Jacome-Galarza L.-R
Title (up) Crop yield prediction utilizing multimodal deep learning Type Conference Article
Year 2021 Publication 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021 Abbreviated Journal
Volume Issue Pages
Keywords Agricultura de precisión; sensores remotos; aprendizaje profundo multimodal; IoT; agentes inteligentes; computación aplicada.
Abstract La agricultura de precisión es una práctica vital para

mejorar la producción de cosechas. El presente trabajo tiene

como objetivo desarrollar un modelo multimodal de aprendizaje

profundo que es capaz de producir un mapa de salud de

cosechas. El modelo recibe como entradas imágenes multiespectrales

y datos de sensores de campo (humedad,

temperatura, estado del suelo, etc.) y crea un mapa de

rendimiento de la cosecha. La utilización de datos multimodales

tiene como finalidad extraer patrones ocultos del estado de salud

de las cosechas y de esta manera obtener mejores resultados que

los obtenidos mediante los índices de vegetación.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 150
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title (up) Cross-spectral image dehaze through a dense stacked conditional GAN based approach. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 358-364
Keywords
Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 92
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title (up) Cross-spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
Year 2017 Publication 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) Abbreviated Journal
Volume Issue Pages 1-5
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 57
Permanent link to this record
 

 
Author Mildred Cruz; Cristhian A. Aguilera; Boris X. Vintimilla; Ricardo Toledo; Ángel D. Sappa
Title (up) Cross-spectral image registration and fusion: an evaluation study Type Conference Article
Year 2015 Publication 2nd International Conference on Machine Vision and Machine Learning Abbreviated Journal
Volume 331 Issue Pages
Keywords multispectral imaging; image registration; data fusion; infrared and visible spectra
Abstract This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
Address
Corporate Author Thesis
Publisher Computer Vision Center Place of Publication Barcelona, Spain Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 35
Permanent link to this record
 

 
Author Rafael Rivadeneira, Henry Velesaca & Angel Sappa
Title (up) Cross-Spectral Image Registration: a Comparative Study and a New Benchmark Dataset Type Conference Article
Year 2024 Publication In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 237
Permanent link to this record
 

 
Author Cristhian A. Aguilera; Angel D. Sappa; Ricardo Toledo
Title (up) Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
Year 2017 Publication In Sensors Journal Abbreviated Journal
Volume Vol. 17 Issue Pages pp. 873
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 64
Permanent link to this record
 

 
Author N. Onkarappa; Cristhian A. Aguilera; B. X. Vintimilla; Angel D. Sappa
Title (up) Cross-spectral Stereo Correspondence using Dense Flow Fields Type Conference Article
Year 2014 Publication Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 Abbreviated Journal
Volume 3 Issue Pages 613 - 617
Keywords Cross-spectral Stereo Correspondence, Dense Optical Flow, Infrared and Visible Spectrum
Abstract This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2014 International Conference on Computer Vision Theory and Applications (VISAPP)
Notes Approved no
Call Number cidis @ cidis @ Serial 27
Permanent link to this record