|   | 
Details
   web
Records
Author Rivadeneira R.E., Sappa A.D., Vintimilla B.X., Nathan S., Kansal P., Mehri A et al.
Title Thermal Image Super-Resolution Challenge – PBVS 2021. Type Conference Article
Year 2021 Publication In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021., junio 19 – 25, 2021 Abbreviated Journal
Volume Issue Pages 4354-4362
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 151
Permanent link to this record
 

 
Author Jacome-Galarza L.-R
Title Crop yield prediction utilizing multimodal deep learning Type Conference Article
Year 2021 Publication 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021 Abbreviated Journal
Volume Issue Pages
Keywords Agricultura de precisión; sensores remotos; aprendizaje profundo multimodal; IoT; agentes inteligentes; computación aplicada.
Abstract La agricultura de precisión es una práctica vital para

mejorar la producción de cosechas. El presente trabajo tiene

como objetivo desarrollar un modelo multimodal de aprendizaje

profundo que es capaz de producir un mapa de salud de

cosechas. El modelo recibe como entradas imágenes multiespectrales

y datos de sensores de campo (humedad,

temperatura, estado del suelo, etc.) y crea un mapa de

rendimiento de la cosecha. La utilización de datos multimodales

tiene como finalidad extraer patrones ocultos del estado de salud

de las cosechas y de esta manera obtener mejores resultados que

los obtenidos mediante los índices de vegetación.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 150
Permanent link to this record
 

 
Author Mehri, A, Ardakani, P.B., Sappa, A.D.
Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
Year 2021 Publication 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 Abbreviated Journal
Volume Issue Pages 7196-7202
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 149
Permanent link to this record
 

 
Author Mehri, A, Ardakani, P.B., Sappa, A.D.
Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. Type Conference Article
Year 2021 Publication In IEEE Winter Conference on Applications of Computer Vision WACV 2021, enero 5-9, 2021 Abbreviated Journal
Volume Issue Pages 2703-2712
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 148
Permanent link to this record
 

 
Author Charco, J.L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O.
Title Camera pose estimation in multi-view environments:from virtual scenarios to the real world Type Journal Article
Year 2021 Publication In Image and Vision Computing Journal. (Article number 104182) Abbreviated Journal
Volume Vol. 110 Issue Pages
Keywords Relative camera pose estimation, Domain adaptation, Siamese architecture, Synthetic data, Multi-view environments
Abstract This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired

images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of

overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly

trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the

relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity

on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the

scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,

highlighting the importance on the similarity between virtual-real scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 147
Permanent link to this record
 

 
Author Rosero Vasquez Shendry
Title Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020. Type Journal Article
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 615-625
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 145
Permanent link to this record
 

 
Author Patricia L. Suarez
Title Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. Type Book Chapter
Year 2020 Publication Ediciones FIEC-ESPOL. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector. Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 144
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E.
Title Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling Type Journal Article
Year 2020 Publication Electronic Letters on Computer Vision and Image Analysis (ELCVIA) Abbreviated Journal
Volume Vol. 19 Issue Issue 2 Pages pp. 17-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 140
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E. & W. Lim
Title Lateral confinement of high-impedance surface-waves through reinforcement learning Type Journal Article
Year 2020 Publication Electronics Letters Abbreviated Journal
Volume Vol. 56 Issue 23, 12 November 2020 Pages pp. 1262-1264
Keywords
Abstract The authors present a model-free policy-based reinforcement learning

model that introduces perturbations on the pattern of a metasurface.

The objective is to learn a policy that changes the size of the

patches, and therefore the impedance in the sides of an artificially structured

material. The proposed iterative model assigns the highest reward

when the patch sizes allow the transmission along a constrained path

and penalties when the patch sizes make the surface wave radiate to

the sides of the metamaterial. After convergence, the proposed

model learns an optimal patch pattern that achieves lateral confinement

along the metasurface. Simulation results show that the proposed

learned-pattern can effectively guide the electromagnetic wave

through a metasurface, maintaining its instantaneous eigenstate when

the homogeneity is perturbed. Moreover, the pattern learned to

prevent reflections by changing the patch sizes adiabatically. The

reflection coefficient S1, 2 shows that most of the power gets transferred

from the source to the destination with the proposed design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 139
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa and Boris X. Vintimilla
Title Deep learning-based vegetation index estimation Type Book Chapter
Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Book. Abbreviated Journal
Volume Chapter 9 Issue Issue 2 Pages 205-232
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial (down) 137
Permanent link to this record