|   | 
Details
   web
Records
Author N. Onkarappa; Cristhian A. Aguilera; B. X. Vintimilla; Angel D. Sappa
Title Cross-spectral Stereo Correspondence using Dense Flow Fields Type Conference Article
Year 2014 Publication (up) Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 Abbreviated Journal
Volume 3 Issue Pages 613 - 617
Keywords Cross-spectral Stereo Correspondence, Dense Optical Flow, Infrared and Visible Spectrum
Abstract This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2014 International Conference on Computer Vision Theory and Applications (VISAPP)
Notes Approved no
Call Number cidis @ cidis @ Serial 27
Permanent link to this record
 

 
Author Armin Mehri; Angel D. Sappa
Title Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples Type Conference Article
Year 2019 Publication (up) Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal
Volume Issue Pages 971-979
Keywords
Abstract This paper presents a novel approach for colorizing

near infrared (NIR) images. The approach is based on

image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored

networks that require less computation times, converge

faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation

metrics—and qualitatively evaluated showing considerable

improvements with respect to the state of the art
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 105
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Image Vegetation Index through a Cycle Generative Adversarial Network Type Conference Article
Year 2019 Publication (up) Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal
Volume Issue Pages 1014-1021
Keywords
Abstract This paper proposes a novel approach to estimate the

Normalized Difference Vegetation Index (NDVI) just from

an RGB image. The NDVI values are obtained by using

images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The

cycled GAN network is able to obtain a NIR image from

a given gray scale image. It is trained by using unpaired

set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are

obtained from the provided RGB images). Then, the NIR

image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous

approaches are also provided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 106
Permanent link to this record
 

 
Author Rangnekar,Aneesha; Mulhollan,Zachary; Vodacek,Anthony; Hoffman,Matthew; Sappa,Angel D.; Yu,Jun et al.
Title Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. Type Conference Article
Year 2022 Publication (up) Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE
Volume 2022-June Issue Pages 389-397
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 176
Permanent link to this record
 

 
Author Low S., Inkawhich N., Nina O., Sappa A. and Blasch E.
Title Multi-modal Aerial View Object Classification Challenge Results-PBVS 2022. Type Conference Article
Year 2022 Publication (up) Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE
Volume 2022-June Issue Pages 417-425
Keywords
Abstract This paper details the results and main findings of the

second iteration of the Multi-modal Aerial View Object

Classification (MAVOC) challenge. This year’s MAVOC

challenge is the second iteration. The primary goal of

both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) input

modalities. Teams are encouraged/challenged to develop

multi-modal approaches that incorporate complementary

information from both domains. While the 2021 challenge

showed a proof of concept that both modalities could be

used together, the 2022 challenge focuses on the detailed

multi-modal models. Using the same UNIfied COincident

Optical and Radar for recognitioN (UNICORN) dataset and

competition format that was used in 2021. Specifically, the

challenge focuses on two techniques, (1) SAR classification

and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods

and describing their performance on our blind test set. Notably, all of the top ten teams outperform our baseline. For

SAR classification, the top team showed a 129% improvement over our baseline and an 8% average improvement

from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average

improvement over 2021.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 177
Permanent link to this record
 

 
Author Roberto Jacome Galarza.
Title Multimodal deep learning for crop yield prediction. Type Conference Article
Year 2022 Publication (up) Doctoral Symposium on Information and Communication Technologies –DSICT 2022. Octubre 12-14. Abbreviated Journal
Volume 1647 Issue Communicationsin Computer and Infor Pages 106-117
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 193
Permanent link to this record
 

 
Author Stalin Francis Quinde
Title Un nuevo modelo BM3D-RNCA para mejorar la estimación de la imagen libre de ruido producida por el método BM3D. (Ph.D. Angel Sappa, Director.). M.Sc. thesis Type Book Chapter
Year 2019 Publication (up) Ediciones FIEC-ESPOL Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director. Thesis Master's thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 117
Permanent link to this record
 

 
Author Shendry Rosero Vásquez
Title Reconocimiento facial: técnicas tradicionales y técnicas de aprendizaje profundo, un análisis. (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). M.Sc. thesis Type Book Chapter
Year 2019 Publication (up) Ediciones FIEC-ESPOL Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director de tesis & Ph.D. Boris Vintimilla, Codirector Thesis Master's thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number gtsi @ user @ Serial 114
Permanent link to this record
 

 
Author Patricia L. Suarez
Title Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. Type Book Chapter
Year 2020 Publication (up) Ediciones FIEC-ESPOL. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector. Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 144
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E.
Title Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling Type Journal Article
Year 2020 Publication (up) Electronic Letters on Computer Vision and Image Analysis (ELCVIA) Abbreviated Journal
Volume Vol. 19 Issue Issue 2 Pages pp. 17-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 140
Permanent link to this record