|   | 
Details
   web
Records
Author Jorge L. Charco; Boris X. Vintimilla; Angel D. Sappa
Title Deep learning based camera pose estimation in multi-view environment. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 224-228
Keywords
Abstract This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 93
Permanent link to this record
 

 
Author Alex Ferrin; Julio Larrea; Miguel Realpe; Daniel Ochoa
Title Detection of utility poles from noisy Point Cloud Data in Urban environments. Type Conference Article
Year 2018 Publication Artificial Intelligence and Cloud Computing Conference (AICCC 2018) Abbreviated Journal
Volume Issue Pages 53-57
Keywords
Abstract In recent years 3D urban maps have become more common, thus providing complex point clouds that include diverse urban furniture such as pole-like objects. Utility poles detection in urban environment is of particular interest for electric utility companies in order to maintain an updated inventory for better planning and management. The present study develops an automatic method for the detection of utility poles from noisy point cloud data of Guayaquil – Ecuador, where many poles are located next to buildings, or houses are built until the border of the sidewalk getting very close to poles, which increases the difficulty of discriminating poles, walls, columns, fences and building corners.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 94
Permanent link to this record
 

 
Author Marjorie Chalen; Boris X. Vintimilla
Title Towards Action Prediction Applying Deep Learning Type Journal Article
Year 2019 Publication Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal
Volume Issue Pages pp. 1-3
Keywords action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.
Abstract Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 129
Permanent link to this record
 

 
Author Armin Mehri; Angel D. Sappa
Title Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples Type Conference Article
Year 2019 Publication Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal
Volume Issue Pages 971-979
Keywords
Abstract This paper presents a novel approach for colorizing

near infrared (NIR) images. The approach is based on

image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored

networks that require less computation times, converge

faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation

metrics—and qualitatively evaluated showing considerable

improvements with respect to the state of the art
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 105
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Image Vegetation Index through a Cycle Generative Adversarial Network Type Conference Article
Year 2019 Publication Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal
Volume Issue Pages 1014-1021
Keywords
Abstract This paper proposes a novel approach to estimate the

Normalized Difference Vegetation Index (NDVI) just from

an RGB image. The NDVI values are obtained by using

images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The

cycled GAN network is able to obtain a NIR image from

a given gray scale image. It is trained by using unpaired

set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are

obtained from the provided RGB images). Then, the NIR

image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous

approaches are also provided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 106
Permanent link to this record
 

 
Author Angel Morera; Angel Sánchez; Angel D. Sappa; José F. Vélez
Title Robust Detection of Outdoor Urban Advertising Panels in Static Images. Type Conference Article
Year 2019 Publication 17th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2019); Ávila, España. Communications in Computer and Information Science Abbreviated Journal
Volume 1047 Issue Pages 246-256
Keywords
Abstract One interesting publicity application for Smart City environments is recognizing brand information contained in urban advertising

panels. For such a purpose, a previous stage is to accurately detect and

locate the position of these panels in images. This work presents an effective solution to this problem using a Single Shot Detector (SSD) based

on a deep neural network architecture that minimizes the number of

false detections under multiple variable conditions regarding the panels and the scene. Achieved experimental results using the Intersection

over Union (IoU) accuracy metric make this proposal applicable in real

complex urban images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 107
Permanent link to this record
 

 
Author José Reyes; Axel Godoy; Miguel Realpe.
Title Uso de software de código abierto para fusión de imágenes agrícolas multiespectrales adquiridas con drones. Type Conference Article
Year 2019 Publication International Multi-Conference of Engineering, Education and Technology (LACCEI 2019); Montego Bay, Jamaica Abbreviated Journal
Volume 2019-July Issue Pages
Keywords
Abstract Los drones o aeronaves no tripuladas son muy útiles para la adquisición de imágenes, de forma mucho más simple que los satélites o aviones. Sin embargo, las imágenes adquiridas por drones deben ser combinadas de alguna forma para convertirse en información de valor sobre un terreno o cultivo. Existen diferentes programas que reciben imágenes y las combinan en una sola imagen, cada uno con diferentes características (rendimiento, precisión, resultados, precio, etc.). En este estudio se revisaron diferentes programas de código abierto para fusión de imágenes, con el ?n de establecer cuál de ellos es más útil, especí?camente para ser utilizado por pequeños y medianos agricultores en Ecuador. Los resultados pueden ser de interés para diseñadores de software, ya que al utilizar código abierto, es posible modi?car e integrar los programas en un ?ujo de trabajo más simpli?cado. Además, que permite disminuir costos debido a que no requiere de pagos de licencias para su uso, lo cual puede repercutir en un mayor acceso a la tecnología para los pequeños y medianos agricultores. Como parte de los resultados de este estudio se ha creado un repositorio de acceso público con algoritmos de pre-procesamiento necesarios para manipular las imágenes adquiridas por una cámara multiespectral y para luego obtener un mapa completo en formatos RGB, CIR y NDVI.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 102
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla.
Title Thermal Image SuperResolution through Deep Convolutional Neural Network. Type Conference Article
Year 2019 Publication 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá Abbreviated Journal
Volume Issue Pages 417-426
Keywords
Abstract Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 103
Permanent link to this record
 

 
Author Jorge Alvarez; Mireya Zapata; Dennys Paillacho
Title Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. Type Conference Article
Year 2019 Publication 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania Abbreviated Journal
Volume 1026 Issue Pages 160-165
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 104
Permanent link to this record
 

 
Author Jorge Alvarez Tello; Mireya Zapata; Dennys Paillacho
Title Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. Type Conference Article
Year 2019 Publication 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing Abbreviated Journal
Volume 975 Issue Pages 108-118
Keywords
Abstract This paper presents the simplification of the head movements from

the analysis of the biomechanical parameters of the head and neck at the

mechanical and structural level through CAD modeling and construction with

additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the

denominated MASHI (Multipurpose Assistant robot for Social Human-robot

Interaction) experimental robotic telepresence platform, implemented by a

display with a fish-eye camera along with the mechanical mechanism, which

permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and

the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and

the combination of all of them to establish an active communication through

telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number gtsi @ user @ Serial 108
Permanent link to this record