|   | 
Details
   web
Records
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Deep Learning based Single Image Dehazing Type Conference Article
Year 2018 Publication 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper proposes a novel approach to remove haze

degradations in RGB images using a stacked conditional

Generative Adversarial Network (GAN). It employs a triplet

of GAN to remove the haze on each color channel independently.

A multiple loss functions scheme, applied over a

conditional probabilistic model, is proposed. The proposed

GAN architecture learns to remove the haze, using as conditioned

entrance, the images with haze from which the clear

images will be obtained. Such formulation ensures a fast

model training convergence and a homogeneous model generalization.

Experiments showed that the proposed method

generates high-quality clear images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 83
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Vegetation Index Estimation from Monospectral Images Type Conference Article
Year 2018 Publication 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science Abbreviated Journal
Volume 10882 Issue Pages 353-362
Keywords
Abstract This paper proposes a novel approach to estimate Normalized

Difference Vegetation Index (NDVI) from just the red channel of

a RGB image. The NDVI index is defined as the ratio of the difference

of the red and infrared radiances over their sum. In other words, information

from the red channel of a RGB image and the corresponding

infrared spectral band are required for its computation. In the current

work the NDVI index is estimated just from the red channel by training a

Conditional Generative Adversarial Network (CGAN). The architecture

proposed for the generative network consists of a single level structure,

which combines at the final layer results from convolutional operations

together with the given red channel with Gaussian noise to enhance

details, resulting in a sharp NDVI image. Then, the discriminative model

estimates the probability that the NDVI generated index came from the

training dataset, rather than the index automatically generated. Experimental

results with a large set of real images are provided showing that

a Conditional GAN single level model represents an acceptable approach

to estimate NDVI index.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 82
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Near InfraRed Imagery Colorization Type Conference Article
Year 2018 Publication 25 th IEEE International Conference on Image Processing, ICIP 2018 Abbreviated Journal
Volume Issue Pages 2237-2241
Keywords
Abstract This paper proposes a stacked conditional Generative

Adversarial Network-based method for Near InfraRed

(NIR) imagery colorization. We propose a variant architecture

of Generative Adversarial Network (GAN) that uses multiple

loss functions over a conditional probabilistic generative model.

We show that this new architecture/loss-function yields better

generalization and representation of the generated colored IR

images. The proposed approach is evaluated on a large test

dataset and compared to recent state of the art methods using

standard metrics.1

Index Terms—Convolutional Neural Networks (CNN), Generative

Adversarial Network (GAN), Infrared Imagery colorization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 81
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images Type Conference Article
Year 2018 Publication International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing Abbreviated Journal
Volume 721 Issue Pages
Keywords
Abstract This paper proposes a novel approach to use cross-spectral

images to achieve a better performance with the proposed Adaptive Harris

corner detector comparing its obtained results with those achieved

with images of the visible spectra. The images of urban, field, old-building

and country category were used for the experiments, given the variety of

the textures present in these images, with which the complexity of the

proposal is much more challenging for its verification. It is a new scope,

which means improving the detection of characteristic points using crossspectral

images (NIR, G, B) and applying pruning techniques, the combination

of channels for this fusion is the one that generates the largest

variance based on the intensity of the merged pixels, therefore, it is that

which maximizes the entropy in the resulting Cross-spectral images.

Harris is one of the most widely used corner detection algorithm, so

any improvement in its efficiency is an important contribution in the

field of computer vision. The experiments conclude that the inclusion of

a (NIR) channel in the image as a result of the combination of the spectra,

greatly improves the corner detection due to better entropy of the

resulting image after the fusion, Therefore the fusion process applied to

the images improves the results obtained in subsequent processes such as

identification of objects or patterns, classification and/or segmentation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1 Approved no
Call Number gtsi @ user @ Serial 84
Permanent link to this record
 

 
Author Wilton Agila; Gomer Rubio; L. Miranda; L. Vázquez
Title Qualitative Model of Control in the Pressure Stabilization of PEM Fuel Cell Type Conference Article
Year 2018 Publication 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. Abbreviated Journal
Volume Issue Pages 1221-1226
Keywords
Abstract This work describes an approximate reasoning

technique to deal with the non-linearity that occurs in the

stabilization of the pressure of anodic and cathodic gases of a

proton exchange membrane fuel cell (PEM). The implementation

of a supervisory element in the stabilization of the pressure of the

PEM cell is described. The fuzzy supervisor is a reference

control, it varies the value of the reference given to the classic

low-level controller, Proportional – Integral – Derivative (PID),

according to the speed of change of the measured pressure and

the change in the error of the pressure. The objective of the fuzzy

supervisor is to achieve a rapid response over time of the variable

pressure, avoiding unwanted overruns with respect to the

reference value. A comparative analysis is detailed with the

classic PID control to evaluate the operation of the “fuzzy

supervisor”, with different flow values and different sizes of

active area of the PEM cell (electric power generated).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 88
Permanent link to this record
 

 
Author Gomer Rubio; Wilton Agila
Title Dynamic Modeling of Fuel Cells in a Strategic Context Type Conference Article
Year 2018 Publication 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 86
Permanent link to this record
 

 
Author Carlos Monsalve; Alain April; Alain Abran
Title BPM and requirements elicitation at multiple levels of abstraction: A review Type Conference Article
Year 2011 Publication IADIS International Conference on Information Systems 2011 Abbreviated Journal
Volume Issue Pages 237-242
Keywords Business process modeling, levels of abstraction, requirements elicitation, requirements modeling, review
Abstract Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs.

Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs

and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches.
Address CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL) Km. 30.5 vía Perimetral,
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 15
Permanent link to this record
 

 
Author Xavier Soria; Angel D. Sappa
Title Improving Edge Detection in RGB Images by Adding NIR Channel. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 266-273
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 95
Permanent link to this record
 

 
Author Xavier Soria; Angel D. Sappa; Riad Hammoud
Title Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018 ,2059. Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Vol. 18 Issue Issue 7 Pages
Keywords
Abstract Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 96
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 358-364
Keywords
Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 92
Permanent link to this record