toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mónica Villavicencio; Alain Abran pdf  url
openurl 
  Title Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results Type Journal Article
  Year 2011 Publication Journal of Software Engineering and Application Abbreviated Journal  
  Volume Issue Pages pp. 227-234  
  Keywords (up) Software measurement, education, software engineering  
  Abstract How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented.  
  Address 2 CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 17  
Permanent link to this record
 

 
Author Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa pdf  openurl
  Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
  Year 2020 Publication Sensors 2020 Abbreviated Journal  
  Volume Vol. 2020-June Issue 11 Pages pp. 1-13  
  Keywords (up) stereo matching; deep learning; embedded GPU  
  Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14248220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 132  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla pdf  isbn
openurl 
  Title Thermal Image Super-Resolution: a Novel Architecture and Dataset Type Conference Article
  Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal  
  Volume 4 Issue Pages 111-119  
  Keywords (up) Thermal images, Far Infrared, Dataset, Super-Resolution.  
  Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large

dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal

cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal

cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.

The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty

on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach

is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are

available.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989758402-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 121  
Permanent link to this record
 

 
Author Jacome-Galarza L.-R., Realpe Robalino M.-A., Paillacho Corredores J., Benavides Maldonado J.-L. url  openurl
  Title Time series in sensor data using state of the art deep learning approaches: A systematic literature review. Type Conference Article
  Year 2022 Publication VII International Conference on Science, Technology and Innovation for Society (CITIS 2021), mayo 26-28.  Smart Innovation, Systems and Technologies. Abbreviated Journal  
  Volume Vol. 252 Issue Pages 503-514  
  Keywords (up) time series, deep learning, recurrent networks, sensor data, IoT.  
  Abstract IoT (Internet of Things) and AI (Artificial Intelligence) are becoming

support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time series data we have: LSTM (Long Short-Term Memory) for its high precision in prediction and the ability to automatically process input sequences; CNN (Convolutional Neural Networks) mainly in human activity

recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and RNN (Recurrent Neural Networks) for data fusion from different sensors and their subsequent classification; and stacked LSTM Autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing.Finally, well-known technologies in natural language processing are also used in time series data prediction, such as the attention mechanism and embeddings obtaining promising results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 152  
Permanent link to this record
 

 
Author Ricardo Cajo; Wilton Agila pdf  url
openurl 
  Title Evaluation of algorithms for linear and nonlinear PID control for Twin Rotor MIMO System Type Conference Article
  Year 2015 Publication Computer Aided System Engineering (APCASE), 2015 Asia-Pacific Conference on, Quito, 2015 Abbreviated Journal  
  Volume Issue Pages 214-219  
  Keywords (up) Twin Rotor MIMO System (TRMS); Proportional-Integral-Derivative (PID); Linear PID Controller; Nonlinear PID Controller; Nonlinear Observer  
  Abstract In this paper the linear and nonlinear PID control algorithms are analyzed and for a twin rotor MIMO system (TRMS), whose characteristic is not linear with two degrees of freedom and cross-links. The aim of this work is to stabilize the TRMS, to achieve a particular position and follow a trajectory in the shortest time. Mathematical modeling of helicopter model is simulated using MATLAB / Simulink, the two degrees of freedom are controlled both horizontally and vertically through the proposed controllers. Also nonlinear segmented observers for each degree of freedom are designed in order to measure statements required by the nonlinear controller. Followed, a comparative analysis of both algorithms is presented to evaluate their performance in the real TRMS.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 2015 Asia-Pacific Conference on Computer Aided System Engineering  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 36  
Permanent link to this record
 

 
Author Juan C. Basurto, Patricia Chávez and Hernán Córdova pdf  openurl
  Title A Proximity-Aware Transparent Handoff Mobility Scheme for VoIP Communication over Infrastructure Mesh Networks Type Conference Article
  Year 2011 Publication International Congress of Electronic, Electrical and Systems Engineering-INTERCON 2011 Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Wireless Mesh Networks; Quality of Service; Mobility Management; Voice over IP.  
  Abstract Mobility Management plays a key role in Voice-over- IP (VoIP) communications over Wireless Mesh Networks (WMN) as clients should maintain adequate levels of Quality of Service (QoS) as they move across the network. This paper presents PATH, a Proximity-Aware Transparent Handoff mobility scheme for real time voice communications over wireless mesh networks. Our study focuses on Medium Access Control (MAC) layer procedures and relies on gratuitous ARP unicasting in order to provide fast-handoffs. An experimental evaluation has been conducted and its results are shown in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 20  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: