|   | 
Details
   web
Records
Author Patricia Suarez Riofrio & Angel D. Sappa
Title Thermal Image Synthesis: Bridging the Gap between Visible and Infrared Spectrum Type Conference Article
Year 2024 Publication Accepted in 19th International Symposium on Visual Computing 2024 Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 253
Permanent link to this record
 

 
Author Luis Chuquimarca, Boris Vintimilla & Sergio Velastin
Title A Review of External Quality Inspection for Fruit Grading using CNN Models Type Magazine Article
Year 2024 Publication Journal Artificial Intelligence in Agriculture Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 254
Permanent link to this record
 

 
Author Rato D., Oliveira M., Santos V., Sappa A. & Raducanu B.
Title Multi-View 2D to 3D Lifting Video-Based Optimization: A Robust Approach for Human Pose Estimation with Occluded Joint Prediction Type Journal Article
Year 2024 Publication IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Abu Dhabi, October 14-18, 2024 Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 255
Permanent link to this record
 

 
Author Marjorie Chalen; Boris X. Vintimilla
Title Towards Action Prediction Applying Deep Learning Type Journal Article
Year 2019 Publication Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal
Volume Issue Pages pp. 1-3
Keywords (up) action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.
Abstract Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 129
Permanent link to this record
 

 
Author Jacome-Galarza L.-R
Title Crop yield prediction utilizing multimodal deep learning Type Conference Article
Year 2021 Publication 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021 Abbreviated Journal
Volume Issue Pages
Keywords (up) Agricultura de precisión; sensores remotos; aprendizaje profundo multimodal; IoT; agentes inteligentes; computación aplicada.
Abstract La agricultura de precisión es una práctica vital para

mejorar la producción de cosechas. El presente trabajo tiene

como objetivo desarrollar un modelo multimodal de aprendizaje

profundo que es capaz de producir un mapa de salud de

cosechas. El modelo recibe como entradas imágenes multiespectrales

y datos de sensores de campo (humedad,

temperatura, estado del suelo, etc.) y crea un mapa de

rendimiento de la cosecha. La utilización de datos multimodales

tiene como finalidad extraer patrones ocultos del estado de salud

de las cosechas y de esta manera obtener mejores resultados que

los obtenidos mediante los índices de vegetación.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 150
Permanent link to this record
 

 
Author M. Oliveira; L. Seabra Lopes; G. Hyun Lim; S. Hamidreza Kasaei; Angel D. Sappa; A. Tomé
Title Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains Type Conference Article
Year 2015 Publication Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 Abbreviated Journal
Volume Issue Pages 2488 - 2495
Keywords (up) Birds, Training, Legged locomotion, Visualization, Histograms, Object recognition, Gaussian mixture model
Abstract In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Hamburg, Germany Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Notes Approved no
Call Number cidis @ cidis @ Serial 41
Permanent link to this record
 

 
Author Carlos Monsalve; Alain April; Alain Abran
Title Requirements Elicitation Using BPM Notations: Focusing on the Strategic Level Representation Type Conference Article
Year 2011 Publication 10th WSEAS international conference on Applied computer and applied computational science Abbreviated Journal
Volume Issue Pages 235-241
Keywords (up) Business process modeling, levels of abstraction, requirements elicitation, case study, action research
Abstract Business process models (BPM) can be useful for requirements elicitation, among other uses. Since the active participation of all stakeholders is a key factor for successful requirements engineering, it is important that BPM be shared by all stakeholders. Unfortunately, organizations may end up with inconsistent BPM not covering all stakeholders’ needs and constraints. The use of multiple levels of abstraction (MLA), such as at the strategic, tactical and operational levels, is often used in various process-oriented initiatives to facilitate the consolidation of various stakeholders’ needs and constraints. This article surveys the use of MLA in recent BPM research publications and reports on a BPM action-research case study conducted in a Canadian organization, with the aim of exploring the usefulness of the strategic level.
Address CIDIS – Electrical and Computer Engineering Department Escuela Superior Politécnica del Litoral Km. 30.5 vía Perimetral
Corporate Author Thesis
Publisher Place of Publication 1100 rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 CANADA Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 16
Permanent link to this record
 

 
Author Carlos Monsalve; Alain April; Alain Abran
Title BPM and requirements elicitation at multiple levels of abstraction: A review Type Conference Article
Year 2011 Publication IADIS International Conference on Information Systems 2011 Abbreviated Journal
Volume Issue Pages 237-242
Keywords (up) Business process modeling, levels of abstraction, requirements elicitation, requirements modeling, review
Abstract Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs.

Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs

and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches.
Address CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL) Km. 30.5 vía Perimetral,
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 15
Permanent link to this record
 

 
Author Wilton Agila; Victor M. Huilcapi
Title Lógica borrosa para la estimación de estados críticos de una pila de combustible PEM Type Conference Article
Year 2014 Publication Reconocimientos de Patrones, Control Inteligente y Comunicaciones (MACH 2014) Abbreviated Journal
Volume 5 Issue Pages
Keywords (up) Caracterización de pilas de combustible PEM, estado de inundación y deshidratación de la membrana polimérica, árbol de decisión borroso, control, lógica difusa
Abstract La determinación en tiempo real de los estados críticos de operación de la pila de combustible de membrana intercambio protónico (siglas en ingles, PEM) es uno de los principales retos para los sistemas de control de pilas de combustible PEM. En este trabajo, se presenta el desarrollo e implementación de un método no invasivo de bajo coste basado en técnicas de decisión borrosa que permite estimar los estados críticos de operación de la pila de combustible PEM. La estimación se realiza mediante perturbaciones al estado de operación de la pila y el análisis posterior de la evolución temporal del voltaje generado por la pila. La implementación de esta técnica de estimulación-percepción de estado de la pila de combustible para la detección de estados críticos constituye una novedad y un paso hacia el control autónomo en óptimas condiciones de la operación de las pilas de combustible PEM.
Address
Corporate Author Thesis
Publisher Universidad de Cuenca Place of Publication Editor
Language Español Summary Language Español Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 31
Permanent link to this record
 

 
Author Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa
Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
Year 2014 Publication Sensors Journal Abbreviated Journal
Volume Vol. 14 Issue Pages pp. 3690-3701
Keywords (up) cross-spectral imaging; feature point descriptors
Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 28
Permanent link to this record