|   | 
Details
   web
Records
Author Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca
Title Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem Type Conference Article
Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal
Volume 4 Issue Pages 498-505
Keywords Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters.
Abstract This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model

a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The

transfer learning consist of first training the network using pairs of images from the virtual-world scenario

considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight

of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose

estimation accuracy using the proposed model, as well as further improvements when the transfer learning

strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on

the training due to the reduced number of pairs of real-images on most of the public data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 978-989758402-2 Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 120
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla
Title Thermal Image Super-Resolution: a Novel Architecture and Dataset Type Conference Article
Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal
Volume 4 Issue Pages 111-119
Keywords Thermal images, Far Infrared, Dataset, Super-Resolution.
Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large

dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal

cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal

cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.

The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty

on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach

is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are

available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 978-989758402-2 Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 121
Permanent link to this record
 

 
Author Suárez P.
Title Processing and Representation of Multispectral Images Using Deep Learning Techniques Type Magazine Article
Year 2021 Publication In Electronic Letters on Computer Vision and Image Analysis Abbreviated Journal
Volume Vol. 19 Issue Issue 2 Pages pp. 5-8
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector Thesis Master's thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number cidis @ cidis @ Serial 122
Permanent link to this record
 

 
Author Xavier Soria; Edgar Riba; Angel D. Sappa
Title Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection Type Conference Article
Year 2020 Publication 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) Abbreviated Journal
Volume Issue 9093290 Pages 1912-1921
Keywords
Abstract This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 978-172816553-0 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 126
Permanent link to this record
 

 
Author Nayeth I. Solorzano Alcivar, Robert Loor, Stalyn Gonzabay Yagual, & Boris X. Vintimilla
Title Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language Type Conference Article
Year 2020 Publication ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 Abbreviated Journal
Volume 77 Issue Pages
Keywords
Abstract This paper explains how Natural Language (NL) processing by computers, through smart

programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written

statements. The study recognized the need to improve the implemented web platform using a

dashboard in which we collected a set of extensive data to measure assessment factors of using

children´s educational games. In this case, applying NL is a strategy to give assessments, build, and

display more precise written statements to enhance the understanding of children´s gaming behavior.

We propose the development of a new tool to assess the use of written explanations rather than a

statistical representation of feedback information for the comprehension of parents and teachers with

a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim

explanations of children´s behavior playing educational videogames as NL interpretation instead of

statistical representations. An educational series of digital game applications for mobile devices,

identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a

dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary

schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing

the degrees of playability and usability factors obtained from the data produced when children play a

MIDI game. The results obtained are presented in a comprehensive guiding evaluation report

applying NL for parents and teachers. These guiding evaluations are useful to enhance children's

learning understanding related to the school curricula applied to ludic digital games.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 131
Permanent link to this record
 

 
Author Ángel Morera, Ángel Sánchez, A. Belén Moreno, Angel D. Sappa, & José F. Vélez
Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. Type Journal Article
Year 2020 Publication Abbreviated Journal In Sensors
Volume Vol. 2020-August Issue 16 Pages pp. 1-23
Keywords object detection; urban outdoor panels; one-stage detectors; Single Shot MultiBox Detector (SSD); You Only Look Once (YOLO); detection metrics; object and scene imaging variabilities
Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)

deep neural networks for the outdoor advertisement panel detection problem by handling multiple

and combined variabilities in the scenes. Publicity panel detection in images o ers important

advantages both in the real world as well as in the virtual one. For example, applications like Google

Street View can be used for Internet publicity and when detecting these ads panels in images, it could

be possible to replace the publicity appearing inside the panels by another from a funding company.

In our experiments, both SSD and YOLO detectors have produced acceptable results under variable

sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex

background and multiple panels in scenes. Due to the diculty of finding annotated images for the

considered problem, we created our own dataset for conducting the experiments. The major strength

of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable

when the publicity contained inside the panel is analyzed after detecting them. On the other side,

YOLO produced better panel localization results detecting a higher number of True Positive (TP)

panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models

with di erent types of semantic segmentation networks and using the same evaluation metrics is

also included.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 14248220 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 133
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E. & W. Lim
Title Lateral confinement of high-impedance surface-waves through reinforcement learning Type Journal Article
Year 2020 Publication Electronics Letters Abbreviated Journal
Volume Vol. 56 Issue 23, 12 November 2020 Pages pp. 1262-1264
Keywords
Abstract The authors present a model-free policy-based reinforcement learning

model that introduces perturbations on the pattern of a metasurface.

The objective is to learn a policy that changes the size of the

patches, and therefore the impedance in the sides of an artificially structured

material. The proposed iterative model assigns the highest reward

when the patch sizes allow the transmission along a constrained path

and penalties when the patch sizes make the surface wave radiate to

the sides of the metamaterial. After convergence, the proposed

model learns an optimal patch pattern that achieves lateral confinement

along the metasurface. Simulation results show that the proposed

learned-pattern can effectively guide the electromagnetic wave

through a metasurface, maintaining its instantaneous eigenstate when

the homogeneity is perturbed. Moreover, the pattern learned to

prevent reflections by changing the patch sizes adiabatically. The

reflection coefficient S1, 2 shows that most of the power gets transferred

from the source to the destination with the proposed design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 139
Permanent link to this record
 

 
Author Miguel A. Murillo, Julio E. Alvia, & Miguel Realpe
Title Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. Type Conference Article
Year 2021 Publication The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science Abbreviated Journal
Volume 1388 Issue Pages 629-642
Keywords Drone, Open Source, Internet, Web Application, Web Server, SITL, Line of sight, UAV.
Abstract The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 186
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa and Boris X. Vintimilla
Title Deep learning-based vegetation index estimation Type Book Chapter
Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Book. Abbreviated Journal
Volume Chapter 9 Issue Issue 2 Pages 205-232
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 137
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E.
Title Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling Type Journal Article
Year 2020 Publication Electronic Letters on Computer Vision and Image Analysis (ELCVIA) Abbreviated Journal
Volume Vol. 19 Issue Issue 2 Pages pp. 17-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 140
Permanent link to this record