Home | [1–10] << 11 12 13 14 15 16 17 18 19 20 >> [21–22] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Armin Mehri; Angel D. Sappa | ||||
Title | Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples | Type | Conference Article | ||
Year | 2019 | Publication | Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States | Abbreviated Journal | |
Volume | Issue | Pages | 971-979 | ||
Keywords | |||||
Abstract ![]() |
This paper presents a novel approach for colorizing near infrared (NIR) images. The approach is based on image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored networks that require less computation times, converge faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation metrics—and qualitatively evaluated showing considerable improvements with respect to the state of the art |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 105 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. Frizera; Angel D. Sappa; Boris X. Vintimilla; T.F. Bastos | ||||
Title | A predictive model for human activity recognition by observing actions and context | Type | Conference Article | ||
Year | 2015 | Publication | ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 | Abbreviated Journal | |
Volume | Issue | Pages | 323 - 333 | ||
Keywords | Edge width, Image blu,r Defocus map, Edge model | ||||
Abstract ![]() |
This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 43 | ||
Permanent link to this record | |||||
Author | Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca | ||||
Title | Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem | Type | Conference Article | ||
Year | 2020 | Publication | The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 | Abbreviated Journal | |
Volume | 4 | Issue | Pages | 498-505 | |
Keywords | Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. | ||||
Abstract ![]() |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The transfer learning consist of first training the network using pairs of images from the virtual-world scenario considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on the training due to the reduced number of pairs of real-images on most of the public data sets. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-989758402-2 | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 120 | ||
Permanent link to this record | |||||
Author | Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Cycle generative adversarial network: towards a low-cost vegetation index estimation | Type | Conference Article | ||
Year | 2021 | Publication | IEEE International Conference on Image Processing (ICIP 2021) | Abbreviated Journal | |
Volume | 2021-September | Issue | Pages | 2783-2787 | |
Keywords | CyclicGAN, NDVI, near infrared spectra, instance normalization. | ||||
Abstract ![]() |
This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 164 | ||
Permanent link to this record | |||||
Author | Mildred Cruz; Cristhian A. Aguilera; Boris X. Vintimilla; Ricardo Toledo; Ángel D. Sappa | ||||
Title | Cross-spectral image registration and fusion: an evaluation study | Type | Conference Article | ||
Year | 2015 | Publication | 2nd International Conference on Machine Vision and Machine Learning | Abbreviated Journal | |
Volume | 331 | Issue | Pages | ||
Keywords | multispectral imaging; image registration; data fusion; infrared and visible spectra | ||||
Abstract ![]() |
This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Computer Vision Center | Place of Publication | Barcelona, Spain | Editor | |
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 35 | ||
Permanent link to this record | |||||
Author | Sebastián Fuenzalida; Keyla Toapanta; Jonathan S. Paillacho Corredores; Dennys Paillacho | ||||
Title | Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction | Type | Conference Article | ||
Year | 2019 | Publication | IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract ![]() |
This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method, called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 113 | ||
Permanent link to this record | |||||
Author | Raul A. Mira; Patricia L. Suarez; Rafael E. Rivadeneira; Angel D. Sappa | ||||
Title | PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization | Type | Conference Article | ||
Year | 2019 | Publication | IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 1-6 | ||
Keywords | |||||
Abstract ![]() |
This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 112 | ||
Permanent link to this record | |||||
Author | A. Amato; F. Lumbreras; Angel D. Sappa | ||||
Title | A general-purpose crowdsourcing platform for mobile devices | Type | Conference Article | ||
Year | 2014 | Publication | Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 | Abbreviated Journal | |
Volume | 3 | Issue | Pages | 211-215 | |
Keywords | Crowdsourcing Platform, Mobile Crowdsourcing | ||||
Abstract ![]() |
This paper presents details of a general purpose micro-taskon-demand platform based on the crowdsourcing philosophy. This platformwas specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquityand iii) embedded sensors.The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks.Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and task- solver).Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way.Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications.Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | IEEE | Place of Publication | Lisbon, Portugal | Editor | |
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | Computer Vision Theory and Applications (VISAPP), 2014 International Conference on | ||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 25 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. | ||||
Title | Thermal Image Super-Resolution Challenge Results- PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 349-357 | |
Keywords | |||||
Abstract ![]() |
This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept aside for testing. The evaluation tasks were to measure the PSNR and SSIM between the SR image and the ground truth (HR thermal noisy image downsampled by four), and also to measure the PSNR and SSIM between the SR image and the semi-registered HR image (acquired with another camera). The results outperformed those from last year’s challenge, improving both evaluation metrics. This year, almost 100 teams participants registered for the challenge, showing the community’s interest in this hot topic. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 175 | ||
Permanent link to this record | |||||
Author | Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa | ||||
Title | Off-the-Shelf Based System for Urban Environment Video Analytics. | Type | Conference Article | ||
Year | 2020 | Publication | The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) | Abbreviated Journal | |
Volume | 2020-July | Issue | 9145121 | Pages | 459-464 |
Keywords | Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics. | ||||
Abstract ![]() |
This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21578672 | ISBN | 978-172817539-3 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 125 | ||
Permanent link to this record |