Home | [1–10] << 11 12 13 14 15 16 17 18 19 20 >> [21–22] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Carlos Monsalve; Alain April; Alain Abran | ||||
Title | BPM and requirements elicitation at multiple levels of abstraction: A review | Type | Conference Article | ||
Year | 2011 | Publication | IADIS International Conference on Information Systems 2011 | Abbreviated Journal | |
Volume | Issue | Pages | 237-242 | ||
Keywords | Business process modeling, levels of abstraction, requirements elicitation, requirements modeling, review | ||||
Abstract ![]() |
Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs. Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches. |
||||
Address | CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL) Km. 30.5 vía Perimetral, | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 15 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Image patch similarity through a meta-learning metric based approach | Type | Conference Article | ||
Year | 2019 | Publication | 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia | Abbreviated Journal | |
Volume | Issue | Pages | 511-517 | ||
Keywords | |||||
Abstract ![]() |
Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 115 | ||
Permanent link to this record | |||||
Author | Roberto Jacome Galarza; Miguel-Andrés Realpe-Robalino; Chamba-Eras LuisAntonio; Viñán-Ludeña MarlonSantiago and Sinche-Freire Javier-Francisco | ||||
Title | Computer vision for image understanding. A comprehensive review | Type | Conference Article | ||
Year | 2019 | Publication | International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019); Quito, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 248-259 | ||
Keywords | |||||
Abstract ![]() |
Computer Vision has its own Turing test: Can a machine describe the contents of an image or a video in the way a human being would do? In this paper, the progress of Deep Learning for image recognition is analyzed in order to know the answer to this question. In recent years, Deep Learning has increased considerably the precision rate of many tasks related to computer vision. Many datasets of labeled images are now available online, which leads to pre-trained models for many computer vision applications. In this work, we gather information of the latest techniques to perform image understanding and description. As a conclusion we obtained that the combination of Natural Language Processing (using Recurrent Neural Networks and Long Short-Term Memory) plus Image Understanding (using Convolutional Neural Networks) could bring new types of powerful and useful applications in which the computer will be able to answer questions about the content of images and videos. In order to build datasets of labeled images, we need a lot of work and most of the datasets are built using crowd work. These new applications have the potential to increase the human machine interaction to new levels of usability and user’s satisfaction. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 97 | ||
Permanent link to this record | |||||
Author | Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla | ||||
Title | Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. | Type | Journal Article | ||
Year | 2015 | Publication | Revista Tecnológica ESPOL-RTE | Abbreviated Journal | |
Volume | Vol. 28 | Issue | Pages | pp. 1-7 | |
Keywords | Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb | ||||
Abstract ![]() |
Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | ESPOL | Place of Publication | Editor | ||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 39 | ||
Permanent link to this record | |||||
Author | Marjorie Chalen; Boris X. Vintimilla | ||||
Title | Towards Action Prediction Applying Deep Learning | Type | Journal Article | ||
Year | 2019 | Publication | Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 | Abbreviated Journal | |
Volume | Issue | Pages | pp. 1-3 | ||
Keywords | action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm. | ||||
Abstract ![]() |
Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 129 | ||
Permanent link to this record | |||||
Author | Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa | ||||
Title | Fast CNN Stereo Depth Estimation through Embedded GPU Devices | Type | Journal Article | ||
Year | 2020 | Publication | Sensors 2020 | Abbreviated Journal | |
Volume | Vol. 2020-June | Issue | 11 | Pages | pp. 1-13 |
Keywords | stereo matching; deep learning; embedded GPU | ||||
Abstract ![]() |
Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 14248220 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 132 | ||
Permanent link to this record | |||||
Author | Luis Jacome-Galarza, Monica Villavicencio-Cabezas, Miguel Realpe-Robalino, Jose Benavides-Maldonado | ||||
Title | Software Engineering and Distributed Computing in image processing intelligent systems: a systematic literature review. | Type | Conference Article | ||
Year | 2021 | Publication | 19th LACCEI International Multi-Conference for Engineering, Education, and Technology | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | processing, software engineering, deep learning, intelligent vision systems, cloud computing. | ||||
Abstract ![]() |
Deep learning is experiencing an upward technology trend that is revolutionizing intelligent systems in several domains, such as image and speech recognition, machine translation, social network filtering, and the like. By reviewing a total of 80 studies reported from 2016 to 2020, the present article evaluates the application of software engineering to the field of intelligent image processing systems, it also offers insights about aspects related to distributed computing for this type of systems. Results indicate that several topics of software engineering are mostly applied when academics are involved in developing projects associated to this kind of intelligent systems. The findings provide evidences that Apache Spark is the most utilized distributed computing framework for image processing. In addition, Tensorflow is a popular framework used to build convolutional neural networks, which are the prevailing deep learning algorithms used in intelligent image processing systems. Also, among big cloud providers, Amazon Web Services is the preferred computing platform across the industry sectors, followed by Google cloud. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 154 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles | Type | Journal Article | ||
Year | 2016 | Publication | Journal of Automation and Control Engineering (JOACE) | Abbreviated Journal | |
Volume | Vol. 4 | Issue | Pages | pp. 430-436 | |
Keywords | Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System | ||||
Abstract ![]() |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 51 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | A Fault Tolerant Perception system for autonomous vehicles | Type | Conference Article | ||
Year | 2016 | Publication | 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu | Abbreviated Journal | |
Volume | Issue | Pages | 1-6 | ||
Keywords | Fault Tolerant Perception, Sensor Data Fusion, Fault Tolerance, Autonomous Vehicles, Federated Architecture | ||||
Abstract ![]() |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 52 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. | ||||
Title | Thermal Image SuperResolution through Deep Convolutional Neural Network. | Type | Conference Article | ||
Year | 2019 | Publication | 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá | Abbreviated Journal | |
Volume | Issue | Pages | 417-426 | ||
Keywords | |||||
Abstract ![]() |
Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 103 | ||
Permanent link to this record |