toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xavier Soria; Angel D. Sappa; Riad Hammoud pdf  openurl
  Title Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018 ,2059. Type Journal Article
  Year 2018 Publication Abbreviated Journal  
  Volume Vol. 18 Issue Issue 7 Pages  
  Keywords  
  Abstract (up) Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 96  
Permanent link to this record
 

 
Author Angel Morera; Angel Sánchez; Angel D. Sappa; José F. Vélez pdf  openurl
  Title Robust Detection of Outdoor Urban Advertising Panels in Static Images. Type Conference Article
  Year 2019 Publication 17th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2019); Ávila, España. Communications in Computer and Information Science Abbreviated Journal  
  Volume 1047 Issue Pages 246-256  
  Keywords  
  Abstract (up) One interesting publicity application for Smart City environments is recognizing brand information contained in urban advertising

panels. For such a purpose, a previous stage is to accurately detect and

locate the position of these panels in images. This work presents an effective solution to this problem using a Single Shot Detector (SSD) based

on a deep neural network architecture that minimizes the number of

false detections under multiple variable conditions regarding the panels and the scene. Achieved experimental results using the Intersection

over Union (IoU) accuracy metric make this proposal applicable in real

complex urban images.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 107  
Permanent link to this record
 

 
Author Cristina L. Abad; Yi Lu; Roy H. Campbell pdf  url
openurl 
  Title DARE: Adaptive Data Replication for Efficient Cluster Scheduling Type Conference Article
  Year 2011 Publication IEEE International Conference on Cluster Computing, 2011 Abbreviated Journal  
  Volume Issue Pages 159 - 168  
  Keywords MapReduce, replication, scheduling, locality  
  Abstract (up) Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number cidis @ cidis @ Serial 21  
Permanent link to this record
 

 
Author W. Agila; Gomer Rubio; L. Miranda; D. Sanaguano pdf  openurl
  Title Open Control Architecture for the Characterization and Control of the PEM Fuel Cell Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords PEM fuel cell, Experimental System, Control Engineering.  
  Abstract (up) Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 118  
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E. & W. Lim pdf  openurl
  Title Lateral confinement of high-impedance surface-waves through reinforcement learning Type Journal Article
  Year 2020 Publication Electronics Letters Abbreviated Journal  
  Volume Vol. 56 Issue 23, 12 November 2020 Pages pp. 1262-1264  
  Keywords  
  Abstract (up) The authors present a model-free policy-based reinforcement learning

model that introduces perturbations on the pattern of a metasurface.

The objective is to learn a policy that changes the size of the

patches, and therefore the impedance in the sides of an artificially structured

material. The proposed iterative model assigns the highest reward

when the patch sizes allow the transmission along a constrained path

and penalties when the patch sizes make the surface wave radiate to

the sides of the metamaterial. After convergence, the proposed

model learns an optimal patch pattern that achieves lateral confinement

along the metasurface. Simulation results show that the proposed

learned-pattern can effectively guide the electromagnetic wave

through a metasurface, maintaining its instantaneous eigenstate when

the homogeneity is perturbed. Moreover, the pattern learned to

prevent reflections by changing the patch sizes adiabatically. The

reflection coefficient S1, 2 shows that most of the power gets transferred

from the source to the destination with the proposed design.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 139  
Permanent link to this record
 

 
Author Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero pdf  openurl
  Title Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. Type Conference Article
  Year 2018 Publication IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract (up) The identification of shrimp organs in biology using

histological images is a complex task. Shrimp histological images

poses a big challenge due to their texture and similarity among

classes. Image classification by using feature engineering and

convolutional neural networks (CNN) are suitable methods to

assist biologists when performing organ detection. This work

evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-

Words (PBOW) models for image classification leveraging big

data techniques; and transfer learning for the same classification

task by using a pre-trained CNN. A comparative analysis

of these two different techniques is performed, highlighting

the characteristics of both approaches on the shrimp organs

identification problem.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 87  
Permanent link to this record
 

 
Author Julien Poujol; Cristhian A. Aguilera; Etienne Danos; Boris X. Vintimilla; Ricardo Toledo; Angel D. Sappa pdf  url
openurl 
  Title A visible-Thermal Fusion based Monocular Visual Odometry Type Conference Article
  Year 2015 Publication Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 Abbreviated Journal  
  Volume 417 Issue Pages 517-528  
  Keywords Monocular Visual Odometry; LWIR-RGB cross-spectral Imaging; Image Fusion  
  Abstract (up) The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 44  
Permanent link to this record
 

 
Author Miguel A. Murillo, Julio E. Alvia, & Miguel Realpe url  openurl
  Title Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. Type Conference Article
  Year 2021 Publication The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science Abbreviated Journal  
  Volume 1388 Issue Pages 629-642  
  Keywords Drone, Open Source, Internet, Web Application, Web Server, SITL, Line of sight, UAV.  
  Abstract (up) The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 186  
Permanent link to this record
 

 
Author Byron Lima; Ricardo Cajo; Victor Huilcapi; Wilton Agila pdf  url
openurl 
  Title Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum Type Conference Article
  Year 2017 Publication Journal of Physics: Conference Series Abbreviated Journal  
  Volume 783 Issue Pages  
  Keywords  
  Abstract (up) The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 69  
Permanent link to this record
 

 
Author Cristhian A. Aguilera; Francisco J. Aguilera; Angel D. Sappa; Ricardo Toledo pdf  openurl
  Title Learning crossspectral similarity measures with deep convolutional neural networks Type Conference Article
  Year 2016 Publication IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Abbreviated Journal  
  Volume Issue Pages 267-275  
  Keywords  
  Abstract (up) The simultaneous use of images from different spectra can be helpful to improve the performance of many com- puter vision tasks. The core idea behind the usage of cross- spectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN archi- tectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Ex- perimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Ad- ditionally, our experiments show that some CNN architec- tures are capable of generalizing between different cross- spectral domains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 48  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: