|
Records |
Links |
|
Author  |
Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca |

|
|
Title |
Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
498-505 |
|
|
Keywords |
Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. |
|
|
Abstract |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model
a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The
transfer learning consist of first training the network using pairs of images from the virtual-world scenario
considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight
of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose
estimation accuracy using the proposed model, as well as further improvements when the transfer learning
strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on
the training due to the reduced number of pairs of real-images on most of the public data sets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
120 |
|
Permanent link to this record |
|
|
|
|
Author  |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Thermal Image Super-Resolution: a Novel Architecture and Dataset |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
111-119 |
|
|
Keywords |
Thermal images, Far Infrared, Dataset, Super-Resolution. |
|
|
Abstract |
This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large
dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal
cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal
cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty
on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach
is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are
available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
121 |
|
Permanent link to this record |