|   | 
Details
   web
Records
Author Cristhian A. Aguilera; Cristhian Aguilera; Angel D. Sappa
Title Melamine faced panels defect classification beyond the visible spectrum. Type Journal Article
Year 2018 Publication In Sensors 2018 Abbreviated Journal
Volume (up) Vol. 11 Issue Issue 11 Pages
Keywords
Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond

the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 89
Permanent link to this record
 

 
Author Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa
Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
Year 2014 Publication Sensors Journal Abbreviated Journal
Volume (up) Vol. 14 Issue Pages pp. 3690-3701
Keywords cross-spectral imaging; feature point descriptors
Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 28
Permanent link to this record
 

 
Author Angel D. Sappa; Juan A. Carvajal; Cristhian A. Aguilera; Miguel Oliveira; Dennis G. Romero; Boris X. Vintimilla
Title Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study Type Journal Article
Year 2016 Publication Sensors Journal Abbreviated Journal
Volume (up) Vol. 16 Issue Pages pp. 1-15
Keywords image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
Abstract This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and LongWave InfraRed (LWIR).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 47
Permanent link to this record
 

 
Author Cristhian A. Aguilera; Angel D. Sappa; Ricardo Toledo
Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
Year 2017 Publication In Sensors Journal Abbreviated Journal
Volume (up) Vol. 17 Issue Pages pp. 873
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 64
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel Domingo Sappa, Vintimilla B. X. and Hammoud R.
Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal Sensors
Volume (up) Vol. 22 Issue Issue 6 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 170
Permanent link to this record
 

 
Author Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors 2020 Abbreviated Journal
Volume (up) Vol. 2020-June Issue 11 Pages pp. 1-13
Keywords stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14248220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 132
Permanent link to this record