toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Record Links
Author (down) Cristhian A. Aguilera; Cristhian Aguilera; Angel D. Sappa pdf  openurl
  Title Melamine faced panels defect classification beyond the visible spectrum. Type Journal Article
  Year 2018 Publication In Sensors 2018 Abbreviated Journal  
  Volume Vol. 11 Issue Issue 11 Pages  
  Keywords  
  Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond

the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 89  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: