Home | << 1 >> |
Record | |||||
---|---|---|---|---|---|
Author | Xavier Soria; Edgar Riba; Angel D. Sappa | ||||
Title | Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection | Type | Conference Article | ||
Year | 2020 | Publication | 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) | Abbreviated Journal | |
Volume | Issue | 9093290 | Pages | 1912-1921 | |
Keywords | |||||
Abstract | This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-172816553-0 | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 126 | ||
Permanent link to this record |