|   | 
Details
   web
Records
Author (up) Jorge L. Charco; Boris X. Vintimilla; Angel D. Sappa
Title Deep learning based camera pose estimation in multi-view environment. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 224-228
Keywords
Abstract This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 93
Permanent link to this record
 

 
Author (up) Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 358-364
Keywords
Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 92
Permanent link to this record
 

 
Author (up) Xavier Soria; Angel D. Sappa
Title Improving Edge Detection in RGB Images by Adding NIR Channel. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 266-273
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 95
Permanent link to this record