toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Raul A. Mira; Patricia L. Suarez; Rafael E. Rivadeneira; Angel D. Sappa pdf  openurl
  Title PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal (down)  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different

communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 112  
Permanent link to this record
 

 
Author Henry O. Velesaca; Raul A. Mira; Patricia L. Suarez; Christian X. Larrea; Angel D. Sappa. pdf  isbn
openurl 
  Title Deep Learning based Corn Kernel Classification. Type Conference Article
  Year 2020 Publication The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) Abbreviated Journal (down)  
  Volume 2020-June Issue 9150684 Pages 294-302  
  Keywords  
  Abstract This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based

approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.

As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and

the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21607508 ISBN 978-172819360-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 124  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: