|   | 
Details
   web
Records
Author Henry O. Velesaca, Patricia L. Suarez, Dario Carpio, and Angel D. Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
Year 2021 Publication 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science Abbreviated Journal
Volume (down) 13017 Issue Pages 131-143
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 163
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Vegetation Index Estimation from Monospectral Images Type Conference Article
Year 2018 Publication 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science Abbreviated Journal
Volume (down) 10882 Issue Pages 353-362
Keywords
Abstract This paper proposes a novel approach to estimate Normalized

Difference Vegetation Index (NDVI) from just the red channel of

a RGB image. The NDVI index is defined as the ratio of the difference

of the red and infrared radiances over their sum. In other words, information

from the red channel of a RGB image and the corresponding

infrared spectral band are required for its computation. In the current

work the NDVI index is estimated just from the red channel by training a

Conditional Generative Adversarial Network (CGAN). The architecture

proposed for the generative network consists of a single level structure,

which combines at the final layer results from convolutional operations

together with the given red channel with Gaussian noise to enhance

details, resulting in a sharp NDVI image. Then, the discriminative model

estimates the probability that the NDVI generated index came from the

training dataset, rather than the index automatically generated. Experimental

results with a large set of real images are provided showing that

a Conditional GAN single level model represents an acceptable approach

to estimate NDVI index.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 82
Permanent link to this record
 

 
Author Henry O. Velesaca; Raul A. Mira; Patricia L. Suarez; Christian X. Larrea; Angel D. Sappa.
Title Deep Learning based Corn Kernel Classification. Type Conference Article
Year 2020 Publication The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) Abbreviated Journal
Volume (down) 2020-June Issue 9150684 Pages 294-302
Keywords
Abstract This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based

approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.

As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and

the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 21607508 ISBN 978-172819360-1 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 124
Permanent link to this record
 

 
Author Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa
Title Off-the-Shelf Based System for Urban Environment Video Analytics. Type Conference Article
Year 2020 Publication The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) Abbreviated Journal
Volume (down) 2020-July Issue 9145121 Pages 459-464
Keywords Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics.
Abstract This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary

information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to

evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 21578672 ISBN 978-172817539-3 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 125
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Infrared Image Colorization based on a Triplet DCGAN Architecture. Type Conference Article
Year 2017 Publication 13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ) Abbreviated Journal
Volume (down) 2017-July Issue Pages 212-217
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 62
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images Type Conference Article
Year 2018 Publication International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing Abbreviated Journal
Volume (down) 721 Issue Pages
Keywords
Abstract This paper proposes a novel approach to use cross-spectral

images to achieve a better performance with the proposed Adaptive Harris

corner detector comparing its obtained results with those achieved

with images of the visible spectra. The images of urban, field, old-building

and country category were used for the experiments, given the variety of

the textures present in these images, with which the complexity of the

proposal is much more challenging for its verification. It is a new scope,

which means improving the detection of characteristic points using crossspectral

images (NIR, G, B) and applying pruning techniques, the combination

of channels for this fusion is the one that generates the largest

variance based on the intensity of the merged pixels, therefore, it is that

which maximizes the entropy in the resulting Cross-spectral images.

Harris is one of the most widely used corner detection algorithm, so

any improvement in its efficiency is an important contribution in the

field of computer vision. The experiments conclude that the inclusion of

a (NIR) channel in the image as a result of the combination of the spectra,

greatly improves the corner detection due to better entropy of the

resulting image after the fusion, Therefore the fusion process applied to

the images improves the results obtained in subsequent processes such as

identification of objects or patterns, classification and/or segmentation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1 Approved no
Call Number gtsi @ user @ Serial 84
Permanent link to this record
 

 
Author Patricia L. Suarez, Dario Carpio, Angel D. Sappa
Title Enhancement of Guided Thermal Image Super-Resolution Approaches Type Journal
Year 2024 Publication Neurocomputing Abbreviated Journal
Volume (down) 573 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Neurocomputing
Notes Approved no
Call Number cidis @ cidis @ Serial 247
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Colorizing Infrared Images through a Triplet Condictional DCGAN Architecture Type Conference Article
Year 2017 Publication 19th International Conference on Image Analysis and Processing. Abbreviated Journal
Volume (down) Issue Pages 287-297
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 66
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Learning Image Vegetation Index through a Conditional Generative Adversarial Network Type Conference Article
Year 2017 Publication 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM) Abbreviated Journal
Volume (down) Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 70
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Deep Learning based Single Image Dehazing Type Conference Article
Year 2018 Publication 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA Abbreviated Journal
Volume (down) Issue Pages
Keywords
Abstract This paper proposes a novel approach to remove haze

degradations in RGB images using a stacked conditional

Generative Adversarial Network (GAN). It employs a triplet

of GAN to remove the haze on each color channel independently.

A multiple loss functions scheme, applied over a

conditional probabilistic model, is proposed. The proposed

GAN architecture learns to remove the haze, using as conditioned

entrance, the images with haze from which the clear

images will be obtained. Such formulation ensures a fast

model training convergence and a homogeneous model generalization.

Experiments showed that the proposed method

generates high-quality clear images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 83
Permanent link to this record