|   | 
Details
   web
Records
Author (up) Henry O. Velesaca, Patricia L. Suarez, Dario Carpio, and Angel D. Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
Year 2021 Publication 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science Abbreviated Journal
Volume 13017 Issue Pages 131-143
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 163
Permanent link to this record
 

 
Author (up) Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa
Title Off-the-Shelf Based System for Urban Environment Video Analytics. Type Conference Article
Year 2020 Publication The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) Abbreviated Journal
Volume 2020-July Issue 9145121 Pages 459-464
Keywords Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics.
Abstract This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary

information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to

evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 21578672 ISBN 978-172817539-3 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 125
Permanent link to this record
 

 
Author (up) Henry O. Velesaca; Raul A. Mira; Patricia L. Suarez; Christian X. Larrea; Angel D. Sappa.
Title Deep Learning based Corn Kernel Classification. Type Conference Article
Year 2020 Publication The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) Abbreviated Journal
Volume 2020-June Issue 9150684 Pages 294-302
Keywords
Abstract This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based

approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.

As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and

the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 21607508 ISBN 978-172819360-1 Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 124
Permanent link to this record
 

 
Author (up) Patricia L. Suarez
Title Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. Type Book Chapter
Year 2020 Publication Ediciones FIEC-ESPOL. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector. Thesis
Publisher Place of Publication Editor
Language Español Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 144
Permanent link to this record
 

 
Author (up) Patricia L. Suarez, Dario Carpio, Angel D. Sappa
Title Enhancement of Guided Thermal Image Super-Resolution Approaches Type Journal
Year 2024 Publication Neurocomputing Abbreviated Journal
Volume 573 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Neurocomputing
Notes Approved no
Call Number cidis @ cidis @ Serial 247
Permanent link to this record
 

 
Author (up) Patricia L. Suarez, Dario Carpio, Angel D. Sappa and Henry O. Velesaca
Title Transformer based Image Dehazing. Type Conference Article
Year 2022 Publication 16TH International Conference On Signal Image Technology & Internet Based Systems SITIS 2022. Abbreviated Journal
Volume Issue Pages 148-154
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 195
Permanent link to this record
 

 
Author (up) Patricia L. Suarez, Dario Carpio, Angel Sappa
Title Boosting Guided Super-Resolution Performance with Synthesized Images Type Conference Article
Year 2023 Publication 17th International Conference On Signal Image Technology & Internet Based Systems, Bangkok, 8-10 November 2023 Abbreviated Journal
Volume Issue Pages 189 - 195
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 225
Permanent link to this record
 

 
Author (up) Patricia L. Suarez, Dario Carpio, Angel Sappa
Title Depth Map Estimation from a Single 2D Image Type Conference Article
Year 2023 Publication 17th International Conference On Signal Image Technology & Internet Based Systems, Bangkok, 8-10 November 2023 Abbreviated Journal
Volume Issue Pages 347-353
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 226
Permanent link to this record
 

 
Author (up) Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Image patch similarity through a meta-learning metric based approach Type Conference Article
Year 2019 Publication 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia Abbreviated Journal
Volume Issue Pages 511-517
Keywords
Abstract Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results

have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 115
Permanent link to this record
 

 
Author (up) Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla
Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach. Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal
Volume Issue Pages 358-364
Keywords
Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 92
Permanent link to this record